{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}

-- |
-- Module      :   Grisette.Internal.TH.Derivation.DeriveSymEq
-- Copyright   :   (c) Sirui Lu 2024
-- License     :   BSD-3-Clause (see the LICENSE file)
--
-- Maintainer  :   siruilu@cs.washington.edu
-- Stability   :   Experimental
-- Portability :   GHC only
module Grisette.Internal.TH.Derivation.DeriveSymEq
  ( deriveSymEq,
    deriveSymEq1,
    deriveSymEq2,
  )
where

import Grisette.Internal.Core.Data.Class.LogicalOp
  ( LogicalOp (false, true, (.&&)),
  )
import Grisette.Internal.Internal.Decl.Core.Data.Class.SymEq
  ( SymEq ((.==)),
    SymEq1 (liftSymEq),
    SymEq2 (liftSymEq2),
  )
import Grisette.Internal.TH.Derivation.BinaryOpCommon
  ( BinaryOpClassConfig
      ( BinaryOpClassConfig,
        binaryOpAllowSumType,
        binaryOpFieldConfigs,
        binaryOpInstanceNames
      ),
    BinaryOpFieldConfig
      ( BinaryOpFieldConfig,
        extraPatNames,
        fieldCombineFun,
        fieldDifferentExistentialFun,
        fieldFunExp,
        fieldFunNames,
        fieldLMatchResult,
        fieldRMatchResult,
        fieldResFun
      ),
    binaryOpAllowExistential,
    defaultFieldFunExp,
    genBinaryOpClass,
  )
import Grisette.Internal.TH.Derivation.Common (DeriveConfig)
import Language.Haskell.TH (Dec, Exp (ListE), Name, Q)

symEqConfig :: BinaryOpClassConfig
symEqConfig :: BinaryOpClassConfig
symEqConfig =
  BinaryOpClassConfig
    { binaryOpFieldConfigs :: [BinaryOpFieldConfig]
binaryOpFieldConfigs =
        [ BinaryOpFieldConfig
            { extraPatNames :: [String]
extraPatNames = [],
              fieldResFun :: [Exp] -> (Exp, Exp) -> Exp -> Q (Exp, [Bool])
fieldResFun = \[Exp]
_ (Exp
lhs, Exp
rhs) Exp
f ->
                (,[]) (Exp -> (Exp, [Bool])) -> Q Exp -> Q (Exp, [Bool])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [|$(Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
f) $(Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
lhs) $(Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
rhs)|],
              fieldCombineFun :: Name -> [Exp] -> Q (Exp, [Bool])
fieldCombineFun =
                \Name
_ [Exp]
lst -> (,[]) (Exp -> (Exp, [Bool])) -> Q Exp -> Q (Exp, [Bool])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [|foldl (.&&) true $(Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return (Exp -> Q Exp) -> Exp -> Q Exp
forall a b. (a -> b) -> a -> b
$ [Exp] -> Exp
ListE [Exp]
lst)|],
              fieldDifferentExistentialFun :: Exp -> Q Exp
fieldDifferentExistentialFun = Q Exp -> Exp -> Q Exp
forall a b. a -> b -> a
const [|false|],
              fieldFunExp :: FieldFunExp
fieldFunExp =
                [Name] -> FieldFunExp
defaultFieldFunExp ['(.==), 'liftSymEq, 'liftSymEq2],
              fieldFunNames :: [Name]
fieldFunNames = ['(.==), 'liftSymEq, 'liftSymEq2],
              fieldLMatchResult :: Q Exp
fieldLMatchResult = [|false|],
              fieldRMatchResult :: Q Exp
fieldRMatchResult = [|false|]
            }
        ],
      binaryOpInstanceNames :: [Name]
binaryOpInstanceNames = [''SymEq, ''SymEq1, ''SymEq2],
      binaryOpAllowSumType :: Bool
binaryOpAllowSumType = Bool
True,
      binaryOpAllowExistential :: Bool
binaryOpAllowExistential = Bool
True
    }

-- | Derive 'SymEq' instance for a data type.
deriveSymEq :: DeriveConfig -> Name -> Q [Dec]
deriveSymEq :: DeriveConfig -> Name -> Q [Dec]
deriveSymEq DeriveConfig
deriveConfig = DeriveConfig -> BinaryOpClassConfig -> Int -> Name -> Q [Dec]
genBinaryOpClass DeriveConfig
deriveConfig BinaryOpClassConfig
symEqConfig Int
0

-- | Derive 'SymEq1' instance for a data type.
deriveSymEq1 :: DeriveConfig -> Name -> Q [Dec]
deriveSymEq1 :: DeriveConfig -> Name -> Q [Dec]
deriveSymEq1 DeriveConfig
deriveConfig = DeriveConfig -> BinaryOpClassConfig -> Int -> Name -> Q [Dec]
genBinaryOpClass DeriveConfig
deriveConfig BinaryOpClassConfig
symEqConfig Int
1

-- | Derive 'SymEq2' instance for a data type.
deriveSymEq2 :: DeriveConfig -> Name -> Q [Dec]
deriveSymEq2 :: DeriveConfig -> Name -> Q [Dec]
deriveSymEq2 DeriveConfig
deriveConfig = DeriveConfig -> BinaryOpClassConfig -> Int -> Name -> Q [Dec]
genBinaryOpClass DeriveConfig
deriveConfig BinaryOpClassConfig
symEqConfig Int
2