{-# LANGUAGE ExplicitNamespaces #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
module Grisette.Internal.TH.Derivation.BinaryOpCommon
( BinaryOpClassConfig (..),
BinaryOpFieldConfig (..),
FieldFunExp,
defaultFieldFunExp,
genBinaryOpClause,
genBinaryOpClass,
)
where
import Control.Monad (replicateM, unless, when, zipWithM)
import Control.Monad.Identity (IdentityT)
import qualified Data.List as List
import qualified Data.Map as M
import Data.Maybe (catMaybes, mapMaybe)
import Data.Proxy (Proxy (Proxy))
import qualified Data.Set as S
import Grisette.Internal.TH.Derivation.Common
( CheckArgsResult
( argVars,
constructors,
keptVars
),
DeriveConfig (unconstrainedPositions),
checkArgs,
ctxForVar,
evalModeSpecializeList,
extraConstraint,
freshenCheckArgsResult,
isVarUsedInFields,
specializeResult,
)
import Language.Haskell.TH
( Clause,
Dec (FunD, InstanceD),
Exp (VarE),
Kind,
Name,
Pat (VarP, WildP),
Q,
Type (AppT, ConT, VarT),
clause,
conP,
funD,
nameBase,
newName,
normalB,
recP,
sigP,
varE,
varP,
varT,
wildP,
)
import Language.Haskell.TH.Datatype
( ConstructorInfo (constructorFields, constructorName, constructorVars),
TypeSubstitution (freeVariables),
resolveTypeSynonyms,
tvName,
)
import Type.Reflection
( TypeRep,
eqTypeRep,
someTypeRep,
typeRep,
type (:~~:) (HRefl),
)
type FieldFunExp = M.Map Name Name -> Type -> Q Exp
defaultFieldFunExp :: [Name] -> FieldFunExp
defaultFieldFunExp :: [Name] -> FieldFunExp
defaultFieldFunExp [Name]
binaryOpFunNames Map Name Name
argToFunPat = Type -> Q Exp
forall {m :: * -> *}. (MonadFail m, Quote m) => Type -> m Exp
go
where
go :: Type -> m Exp
go Type
ty = do
let allArgNames :: Set Name
allArgNames = Map Name Name -> Set Name
forall k a. Map k a -> Set k
M.keysSet Map Name Name
argToFunPat
let typeHasNoArg :: a -> Bool
typeHasNoArg a
ty =
[Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([a] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [a
ty])
Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
`S.intersection` Set Name
allArgNames
Set Name -> Set Name -> Bool
forall a. Eq a => a -> a -> Bool
== Set Name
forall a. Set a
S.empty
let fun0 :: m Exp
fun0 = Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name] -> Name
forall a. HasCallStack => [a] -> a
head [Name]
binaryOpFunNames
fun1 :: Type -> m Exp
fun1 Type
b = [|$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name]
binaryOpFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
1) $(Type -> m Exp
go Type
b)|]
fun2 :: Type -> Type -> m Exp
fun2 Type
b Type
c = [|$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name]
binaryOpFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
2) $(Type -> m Exp
go Type
b) $(Type -> m Exp
go Type
c)|]
fun3 :: Type -> Type -> Type -> m Exp
fun3 Type
b Type
c Type
d =
[|$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name]
binaryOpFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
3) $(Type -> m Exp
go Type
b) $(Type -> m Exp
go Type
c) $(Type -> m Exp
go Type
d)|]
case Type
ty of
AppT (AppT (AppT (VarT Name
_) Type
b) Type
c) Type
d -> Type -> Type -> Type -> m Exp
fun3 Type
b Type
c Type
d
AppT (AppT (VarT Name
_) Type
b) Type
c -> Type -> Type -> m Exp
fun2 Type
b Type
c
AppT (VarT Name
_) Type
b -> Type -> m Exp
fun1 Type
b
Type
_ | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
ty -> m Exp
fun0
AppT Type
a Type
b | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
a -> Type -> m Exp
fun1 Type
b
AppT (AppT Type
a Type
b) Type
c | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
a -> Type -> Type -> m Exp
fun2 Type
b Type
c
AppT (AppT (AppT Type
a Type
b) Type
c) Type
d | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
a -> Type -> Type -> Type -> m Exp
fun3 Type
b Type
c Type
d
VarT Name
nm -> case Name -> Map Name Name -> Maybe Name
forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup Name
nm Map Name Name
argToFunPat of
Just Name
pname -> Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
pname
Maybe Name
_ -> String -> m Exp
forall a. String -> m a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String -> m Exp) -> String -> m Exp
forall a b. (a -> b) -> a -> b
$ String
"defaultFieldFunExp: unsupported type: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Type -> String
forall a. Show a => a -> String
show Type
ty
Type
_ -> String -> m Exp
forall a. String -> m a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String -> m Exp) -> String -> m Exp
forall a b. (a -> b) -> a -> b
$ String
"defaultFieldFunExp: unsupported type: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Type -> String
forall a. Show a => a -> String
show Type
ty
funPatAndExps ::
FieldFunExp ->
[(Type, Kind)] ->
[Type] ->
Q ([Pat], [Exp])
funPatAndExps :: FieldFunExp -> [(Type, Type)] -> [Type] -> Q ([Pat], [Exp])
funPatAndExps FieldFunExp
fieldFunExpGen [(Type, Type)]
argTypes [Type]
fields = do
let usedArgs :: Set Name
usedArgs = [Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Name] -> Set Name) -> [Name] -> Set Name
forall a b. (a -> b) -> a -> b
$ [Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type]
fields
args <-
((Type, Type) -> Q (Name, Maybe Name))
-> [(Type, Type)] -> Q [(Name, Maybe Name)]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse
( \(Type
ty, Type
_) ->
case Type
ty of
VarT Name
nm ->
if Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
S.member Name
nm Set Name
usedArgs
then do
pname <- String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"p"
return (nm, Just pname)
else (Name, Maybe Name) -> Q (Name, Maybe Name)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return ('undefined, Maybe Name
forall a. Maybe a
Nothing)
Type
_ -> (Name, Maybe Name) -> Q (Name, Maybe Name)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return ('undefined, Maybe Name
forall a. Maybe a
Nothing)
)
[(Type, Type)]
argTypes
let argToFunPat =
[(Name, Name)] -> Map Name Name
forall k a. Ord k => [(k, a)] -> Map k a
M.fromList ([(Name, Name)] -> Map Name Name)
-> [(Name, Name)] -> Map Name Name
forall a b. (a -> b) -> a -> b
$ ((Name, Maybe Name) -> Maybe (Name, Name))
-> [(Name, Maybe Name)] -> [(Name, Name)]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (\(Name
ty, Maybe Name
mpat) -> (Name -> (Name, Name)) -> Maybe Name -> Maybe (Name, Name)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Name
ty,) Maybe Name
mpat) [(Name, Maybe Name)]
args
let funPats = ((Name, Maybe Name) -> Pat) -> [(Name, Maybe Name)] -> [Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Pat -> (Name -> Pat) -> Maybe Name -> Pat
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Pat
WildP Name -> Pat
VarP (Maybe Name -> Pat)
-> ((Name, Maybe Name) -> Maybe Name) -> (Name, Maybe Name) -> Pat
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Name, Maybe Name) -> Maybe Name
forall a b. (a, b) -> b
snd) [(Name, Maybe Name)]
args
defaultFieldFunExps <- traverse (fieldFunExpGen argToFunPat) fields
return (funPats, defaultFieldFunExps)
data BinaryOpFieldConfig = BinaryOpFieldConfig
{ :: [String],
BinaryOpFieldConfig
-> [Exp] -> (Exp, Exp) -> Exp -> Q (Exp, [Bool])
fieldResFun :: [Exp] -> (Exp, Exp) -> Exp -> Q (Exp, [Bool]),
BinaryOpFieldConfig -> Name -> [Exp] -> Q (Exp, [Bool])
fieldCombineFun :: Name -> [Exp] -> Q (Exp, [Bool]),
BinaryOpFieldConfig -> Exp -> Q Exp
fieldDifferentExistentialFun :: Exp -> Q Exp,
BinaryOpFieldConfig -> Q Exp
fieldLMatchResult :: Q Exp,
BinaryOpFieldConfig -> Q Exp
fieldRMatchResult :: Q Exp,
BinaryOpFieldConfig -> FieldFunExp
fieldFunExp :: FieldFunExp,
BinaryOpFieldConfig -> [Name]
fieldFunNames :: [Name]
}
genBinaryOpClause ::
BinaryOpFieldConfig ->
[(Type, Kind)] ->
[(Type, Kind)] ->
Bool ->
ConstructorInfo ->
ConstructorInfo ->
Q [Clause]
genBinaryOpClause :: BinaryOpFieldConfig
-> [(Type, Type)]
-> [(Type, Type)]
-> Bool
-> ConstructorInfo
-> ConstructorInfo
-> Q [Clause]
genBinaryOpClause
(BinaryOpFieldConfig {[String]
[Name]
Q Exp
[Exp] -> (Exp, Exp) -> Exp -> Q (Exp, [Bool])
Exp -> Q Exp
Name -> [Exp] -> Q (Exp, [Bool])
FieldFunExp
extraPatNames :: BinaryOpFieldConfig -> [String]
fieldResFun :: BinaryOpFieldConfig
-> [Exp] -> (Exp, Exp) -> Exp -> Q (Exp, [Bool])
fieldCombineFun :: BinaryOpFieldConfig -> Name -> [Exp] -> Q (Exp, [Bool])
fieldDifferentExistentialFun :: BinaryOpFieldConfig -> Exp -> Q Exp
fieldLMatchResult :: BinaryOpFieldConfig -> Q Exp
fieldRMatchResult :: BinaryOpFieldConfig -> Q Exp
fieldFunExp :: BinaryOpFieldConfig -> FieldFunExp
fieldFunNames :: BinaryOpFieldConfig -> [Name]
extraPatNames :: [String]
fieldResFun :: [Exp] -> (Exp, Exp) -> Exp -> Q (Exp, [Bool])
fieldCombineFun :: Name -> [Exp] -> Q (Exp, [Bool])
fieldDifferentExistentialFun :: Exp -> Q Exp
fieldLMatchResult :: Q Exp
fieldRMatchResult :: Q Exp
fieldFunExp :: FieldFunExp
fieldFunNames :: [Name]
..})
[(Type, Type)]
lhsArgNewVars
[(Type, Type)]
_rhsArgNewVars
Bool
isLast
ConstructorInfo
lhsConstructors
ConstructorInfo
rhsConstructors =
do
lhsFields <- (Type -> Q Type) -> [Type] -> Q [Type]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Type -> Q Type
resolveTypeSynonyms ([Type] -> Q [Type]) -> [Type] -> Q [Type]
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> [Type]
constructorFields ConstructorInfo
lhsConstructors
rhsFields <- mapM resolveTypeSynonyms $ constructorFields rhsConstructors
(funPats, defaultFieldFunExps) <-
funPatAndExps fieldFunExp lhsArgNewVars lhsFields
unless (null extraPatNames) $
unless isLast $
fail "Should not happen"
extraPatNames <- traverse newName extraPatNames
let extraPats = (Name -> Pat) -> [Name] -> [Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Pat
VarP [Name]
extraPatNames
let extraPatExps = (Name -> Exp) -> [Name] -> [Exp]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Exp
VarE [Name]
extraPatNames
lhsFieldsPatNames <- replicateM (length lhsFields) $ newName "lhsField"
rhsFieldsPatNames <- replicateM (length rhsFields) $ newName "rhsField"
let lhsFieldPats =
Name -> [Q Pat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP
(ConstructorInfo -> Name
constructorName ConstructorInfo
lhsConstructors)
( (Name -> Type -> Q Pat) -> [Name] -> [Type] -> [Q Pat]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
(\Name
nm Type
field -> Q Pat -> Q Type -> Q Pat
forall (m :: * -> *). Quote m => m Pat -> m Type -> m Pat
sigP (Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP Name
nm) (Type -> Q Type
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
field))
[Name]
lhsFieldsPatNames
[Type]
lhsFields
)
let rhsFieldPats =
Name -> [Q Pat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP
(ConstructorInfo -> Name
constructorName ConstructorInfo
rhsConstructors)
( (Name -> Type -> Q Pat) -> [Name] -> [Type] -> [Q Pat]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
(\Name
nm Type
field -> Q Pat -> Q Type -> Q Pat
forall (m :: * -> *). Quote m => m Pat -> m Type -> m Pat
sigP (Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP Name
nm) (Type -> Q Type
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
field))
[Name]
rhsFieldsPatNames
[Type]
rhsFields
)
let singleMatchPat =
if [Type] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
lhsFields
then Name -> [Q Pat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP (ConstructorInfo -> Name
constructorName ConstructorInfo
lhsConstructors) []
else Name -> [Q FieldPat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m FieldPat] -> m Pat
recP (ConstructorInfo -> Name
constructorName ConstructorInfo
rhsConstructors) []
let lhsFieldPatExps = (Name -> Exp) -> [Name] -> [Exp]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Exp
VarE [Name]
lhsFieldsPatNames
let rhsFieldPatExps = (Name -> Exp) -> [Name] -> [Exp]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Exp
VarE [Name]
rhsFieldsPatNames
fieldResExpsAndArgsUsed <-
zipWithM
(fieldResFun extraPatExps)
(zip lhsFieldPatExps rhsFieldPatExps)
defaultFieldFunExps
let fieldResExps = (Exp, [Bool]) -> Exp
forall a b. (a, b) -> a
fst ((Exp, [Bool]) -> Exp) -> [(Exp, [Bool])] -> [Exp]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [(Exp, [Bool])]
fieldResExpsAndArgsUsed
let extraArgsUsedByFields = (Exp, [Bool]) -> [Bool]
forall a b. (a, b) -> b
snd ((Exp, [Bool]) -> [Bool]) -> [(Exp, [Bool])] -> [[Bool]]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [(Exp, [Bool])]
fieldResExpsAndArgsUsed
(resExp, extraArgsUsedByResult) <-
fieldCombineFun
(constructorName lhsConstructors)
fieldResExps
let eqt TyVarBndr_ flag
l TyVarBndr_ flag
r =
[|
eqTypeRep
(typeRep :: TypeRep $(Name -> m Type
forall (m :: * -> *). Quote m => Name -> m Type
varT (Name -> m Type) -> Name -> m Type
forall a b. (a -> b) -> a -> b
$ TyVarBndr_ flag -> Name
forall flag. TyVarBndr_ flag -> Name
tvName TyVarBndr_ flag
l))
(typeRep :: TypeRep $(Name -> m Type
forall (m :: * -> *). Quote m => Name -> m Type
varT (Name -> m Type) -> Name -> m Type
forall a b. (a -> b) -> a -> b
$ TyVarBndr_ flag -> Name
forall flag. TyVarBndr_ flag -> Name
tvName TyVarBndr_ flag
r))
|]
let eqx Q Exp
trueCont TyVarBndr_ flag
l TyVarBndr_ flag
r = do
cmp <-
[|
compare
(someTypeRep (Proxy :: Proxy $(Name -> Q Type
forall (m :: * -> *). Quote m => Name -> m Type
varT (Name -> Q Type) -> Name -> Q Type
forall a b. (a -> b) -> a -> b
$ TyVarBndr_ flag -> Name
forall flag. TyVarBndr_ flag -> Name
tvName TyVarBndr_ flag
l)))
(someTypeRep (Proxy :: Proxy $(Name -> Q Type
forall (m :: * -> *). Quote m => Name -> m Type
varT (Name -> Q Type) -> Name -> Q Type
forall a b. (a -> b) -> a -> b
$ TyVarBndr_ flag -> Name
forall flag. TyVarBndr_ flag -> Name
tvName TyVarBndr_ flag
r)))
|]
[|
case $(eqt l r) of
Just HRefl -> $(trueCont)
_ ->
$(fieldDifferentExistentialFun cmp)
|]
let construct [] = Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
resExp
construct ((TyVarBndr_ flag
l, TyVarBndr_ flag
r) : [(TyVarBndr_ flag, TyVarBndr_ flag)]
xs) = [|$(Q Exp -> TyVarBndr_ flag -> TyVarBndr_ flag -> Q Exp
forall {flag} {flag}.
Q Exp -> TyVarBndr_ flag -> TyVarBndr_ flag -> Q Exp
eqx ([(TyVarBndr_ flag, TyVarBndr_ flag)] -> Q Exp
construct [(TyVarBndr_ flag, TyVarBndr_ flag)]
xs) TyVarBndr_ flag
l TyVarBndr_ flag
r)|]
let extraArgsUsed =
([Bool] -> Bool) -> [[Bool]] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ([[Bool]] -> [Bool]) -> [[Bool]] -> [Bool]
forall a b. (a -> b) -> a -> b
$
[[Bool]] -> [[Bool]]
forall a. [[a]] -> [[a]]
List.transpose ([[Bool]] -> [[Bool]]) -> [[Bool]] -> [[Bool]]
forall a b. (a -> b) -> a -> b
$
[Bool]
extraArgsUsedByResult [Bool] -> [[Bool]] -> [[Bool]]
forall a. a -> [a] -> [a]
: [[Bool]]
extraArgsUsedByFields
let extraArgsPats =
(Pat -> Bool -> Pat) -> [Pat] -> [Bool] -> [Pat]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
(\Pat
pat Bool
used -> if Bool
used then Pat
pat else Pat
WildP)
[Pat]
extraPats
[Bool]
extraArgsUsed
bothMatched <-
clause
((return <$> funPats ++ extraArgsPats) ++ [lhsFieldPats, rhsFieldPats])
( normalB
[|
$( construct $
zip
(constructorVars lhsConstructors)
(constructorVars rhsConstructors)
)
|]
)
[]
lhsMatched <-
clause
((wildP <$ funPats) ++ [singleMatchPat, wildP])
(normalB [|$(fieldLMatchResult)|])
[]
rhsMatched <-
clause
((wildP <$ funPats) ++ [wildP, singleMatchPat])
(normalB [|$(fieldRMatchResult)|])
[]
if isLast
then return [bothMatched]
else return [bothMatched, lhsMatched, rhsMatched]
data BinaryOpClassConfig = BinaryOpClassConfig
{ BinaryOpClassConfig -> [BinaryOpFieldConfig]
binaryOpFieldConfigs :: [BinaryOpFieldConfig],
BinaryOpClassConfig -> [Name]
binaryOpInstanceNames :: [Name],
BinaryOpClassConfig -> Bool
binaryOpAllowSumType :: Bool,
BinaryOpClassConfig -> Bool
binaryOpAllowExistential :: Bool
}
genBinaryOpFun ::
BinaryOpFieldConfig ->
Int ->
[(Type, Kind)] ->
[(Type, Kind)] ->
[ConstructorInfo] ->
[ConstructorInfo] ->
Q Dec
genBinaryOpFun :: BinaryOpFieldConfig
-> Int
-> [(Type, Type)]
-> [(Type, Type)]
-> [ConstructorInfo]
-> [ConstructorInfo]
-> Q Dec
genBinaryOpFun BinaryOpFieldConfig
config Int
n [(Type, Type)]
_ [(Type, Type)]
_ [] [] =
Name -> [Q Clause] -> Q Dec
forall (m :: * -> *). Quote m => Name -> [m Clause] -> m Dec
funD
(BinaryOpFieldConfig -> [Name]
fieldFunNames BinaryOpFieldConfig
config [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
n)
[[Q Pat] -> Q Body -> [Q Dec] -> Q Clause
forall (m :: * -> *).
Quote m =>
[m Pat] -> m Body -> [m Dec] -> m Clause
clause [] (Q Exp -> Q Body
forall (m :: * -> *). Quote m => m Exp -> m Body
normalB [|error "impossible"|]) []]
genBinaryOpFun
BinaryOpFieldConfig
config
Int
n
[(Type, Type)]
lhsArgNewVars
[(Type, Type)]
rhsArgNewVars
[ConstructorInfo]
lhsConstructors
[ConstructorInfo]
rhsConstructors = do
clauses <-
(ConstructorInfo -> ConstructorInfo -> Q [Clause])
-> [ConstructorInfo] -> [ConstructorInfo] -> Q [[Clause]]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM
(BinaryOpFieldConfig
-> [(Type, Type)]
-> [(Type, Type)]
-> Bool
-> ConstructorInfo
-> ConstructorInfo
-> Q [Clause]
genBinaryOpClause BinaryOpFieldConfig
config [(Type, Type)]
lhsArgNewVars [(Type, Type)]
rhsArgNewVars Bool
False)
([ConstructorInfo] -> [ConstructorInfo]
forall a. HasCallStack => [a] -> [a]
init [ConstructorInfo]
lhsConstructors)
([ConstructorInfo] -> [ConstructorInfo]
forall a. HasCallStack => [a] -> [a]
init [ConstructorInfo]
rhsConstructors)
lastClause <-
genBinaryOpClause
config
lhsArgNewVars
rhsArgNewVars
True
(last lhsConstructors)
(last rhsConstructors)
let instanceFunName = (BinaryOpFieldConfig -> [Name]
fieldFunNames BinaryOpFieldConfig
config) [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
n
return $ FunD instanceFunName (concat clauses ++ lastClause)
genBinaryOpClass ::
DeriveConfig -> BinaryOpClassConfig -> Int -> Name -> Q [Dec]
genBinaryOpClass :: DeriveConfig -> BinaryOpClassConfig -> Int -> Name -> Q [Dec]
genBinaryOpClass DeriveConfig
deriveConfig (BinaryOpClassConfig {Bool
[Name]
[BinaryOpFieldConfig]
binaryOpFieldConfigs :: BinaryOpClassConfig -> [BinaryOpFieldConfig]
binaryOpInstanceNames :: BinaryOpClassConfig -> [Name]
binaryOpAllowSumType :: BinaryOpClassConfig -> Bool
binaryOpAllowExistential :: BinaryOpClassConfig -> Bool
binaryOpFieldConfigs :: [BinaryOpFieldConfig]
binaryOpInstanceNames :: [Name]
binaryOpAllowSumType :: Bool
binaryOpAllowExistential :: Bool
..}) Int
n Name
typName = do
lhsResult <-
[(Int, EvalModeTag)] -> CheckArgsResult -> Q CheckArgsResult
specializeResult (DeriveConfig -> [(Int, EvalModeTag)]
evalModeSpecializeList DeriveConfig
deriveConfig)
(CheckArgsResult -> Q CheckArgsResult)
-> Q CheckArgsResult -> Q CheckArgsResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Bool -> CheckArgsResult -> Q CheckArgsResult
freshenCheckArgsResult Bool
True
(CheckArgsResult -> Q CheckArgsResult)
-> Q CheckArgsResult -> Q CheckArgsResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< String -> Int -> Name -> Bool -> Int -> Q CheckArgsResult
checkArgs
(Name -> String
nameBase (Name -> String) -> Name -> String
forall a b. (a -> b) -> a -> b
$ [Name] -> Name
forall a. HasCallStack => [a] -> a
head [Name]
binaryOpInstanceNames)
([Name] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Name]
binaryOpInstanceNames Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Name
typName
(Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
&& Bool
binaryOpAllowExistential)
Int
n
when (not binaryOpAllowSumType && length (constructors lhsResult) > 1) $
fail $
"Cannot derive "
<> nameBase (binaryOpInstanceNames !! n)
<> " for sum type"
rhsResult <-
specializeResult (evalModeSpecializeList deriveConfig)
=<< checkArgs
(nameBase $ head binaryOpInstanceNames)
(length binaryOpInstanceNames - 1)
typName
(n == 0)
n
let keptVars' = CheckArgsResult -> [(Type, Type)]
keptVars CheckArgsResult
lhsResult
when (typName == ''IdentityT) $
fail $
show keptVars'
let isTypeUsedInFields' (VarT Name
nm) = CheckArgsResult -> Name -> Bool
isVarUsedInFields CheckArgsResult
lhsResult Name
nm
isTypeUsedInFields' Type
_ = Bool
False
ctxs <-
traverse (uncurry $ ctxForVar (fmap ConT binaryOpInstanceNames)) $
filter (isTypeUsedInFields' . fst) $
fmap snd $
filter (not . (`elem` unconstrainedPositions deriveConfig) . fst) $
zip [0 ..] keptVars'
let keptType = (Type -> Type -> Type) -> Type -> [Type] -> Type
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Type -> Type -> Type
AppT (Name -> Type
ConT Name
typName) ([Type] -> Type) -> [Type] -> Type
forall a b. (a -> b) -> a -> b
$ ((Type, Type) -> Type) -> [(Type, Type)] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Type, Type) -> Type
forall a b. (a, b) -> a
fst [(Type, Type)]
keptVars'
instanceFuns <-
traverse
( \BinaryOpFieldConfig
config ->
BinaryOpFieldConfig
-> Int
-> [(Type, Type)]
-> [(Type, Type)]
-> [ConstructorInfo]
-> [ConstructorInfo]
-> Q Dec
genBinaryOpFun
BinaryOpFieldConfig
config
Int
n
(CheckArgsResult -> [(Type, Type)]
argVars CheckArgsResult
lhsResult)
(CheckArgsResult -> [(Type, Type)]
argVars CheckArgsResult
rhsResult)
(CheckArgsResult -> [ConstructorInfo]
constructors CheckArgsResult
lhsResult)
(CheckArgsResult -> [ConstructorInfo]
constructors CheckArgsResult
rhsResult)
)
binaryOpFieldConfigs
let instanceName = [Name]
binaryOpInstanceNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
n
let instanceType = Type -> Type -> Type
AppT (Name -> Type
ConT Name
instanceName) Type
keptType
extraPreds <-
extraConstraint
deriveConfig
typName
instanceName
[]
keptVars'
(constructors lhsResult)
return
[ InstanceD
Nothing
( extraPreds
++ if null (constructors lhsResult)
then []
else catMaybes ctxs
)
instanceType
instanceFuns
]