{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Grisette.Internal.Internal.Decl.Core.Data.Class.SymEq
(
SymEq (..),
SymEq1 (..),
symEq1,
SymEq2 (..),
symEq2,
pairwiseSymDistinct,
distinct,
SymEqArgs (..),
GSymEq (..),
genericSymEq,
genericLiftSymEq,
)
where
import Data.Kind (Type)
import Generics.Deriving
( Default (Default),
Default1 (Default1),
Generic (Rep, from),
Generic1 (Rep1, from1),
K1 (K1),
M1 (M1),
Par1 (Par1),
Rec1 (Rec1),
U1,
V1,
(:.:) (Comp1),
type (:*:) ((:*:)),
type (:+:) (L1, R1),
)
import Grisette.Internal.Core.Data.Class.LogicalOp (LogicalOp (symNot, (.&&)))
import Grisette.Internal.Core.Data.Class.Solvable (Solvable (con))
import Grisette.Internal.SymPrim.SymBool (SymBool)
import Grisette.Internal.Utils.Derive (Arity0, Arity1)
distinct :: (Eq a) => [a] -> Bool
distinct :: forall a. Eq a => [a] -> Bool
distinct [] = Bool
True
distinct [a
_] = Bool
True
distinct (a
x : [a]
xs) = a -> [a] -> Bool
forall {t}. Eq t => t -> [t] -> Bool
go a
x [a]
xs Bool -> Bool -> Bool
&& [a] -> Bool
forall a. Eq a => [a] -> Bool
distinct [a]
xs
where
go :: t -> [t] -> Bool
go t
_ [] = Bool
True
go t
x' (t
y : [t]
ys) = t
x' t -> t -> Bool
forall a. Eq a => a -> a -> Bool
/= t
y Bool -> Bool -> Bool
forall b. LogicalOp b => b -> b -> b
.&& t -> [t] -> Bool
go t
x' [t]
ys
class SymEq a where
(.==) :: a -> a -> SymBool
a
a .== a
b = SymBool -> SymBool
forall b. LogicalOp b => b -> b
symNot (SymBool -> SymBool) -> SymBool -> SymBool
forall a b. (a -> b) -> a -> b
$ a
a a -> a -> SymBool
forall a. SymEq a => a -> a -> SymBool
./= a
b
{-# INLINE (.==) #-}
infix 4 .==
(./=) :: a -> a -> SymBool
a
a ./= a
b = SymBool -> SymBool
forall b. LogicalOp b => b -> b
symNot (SymBool -> SymBool) -> SymBool -> SymBool
forall a b. (a -> b) -> a -> b
$ a
a a -> a -> SymBool
forall a. SymEq a => a -> a -> SymBool
.== a
b
{-# INLINE (./=) #-}
infix 4 ./=
symDistinct :: [a] -> SymBool
symDistinct = [a] -> SymBool
forall a. SymEq a => [a] -> SymBool
pairwiseSymDistinct
{-# MINIMAL (.==) | (./=) #-}
pairwiseSymDistinct :: (SymEq a) => [a] -> SymBool
pairwiseSymDistinct :: forall a. SymEq a => [a] -> SymBool
pairwiseSymDistinct [] = Bool -> SymBool
forall c t. Solvable c t => c -> t
con Bool
True
pairwiseSymDistinct [a
_] = Bool -> SymBool
forall c t. Solvable c t => c -> t
con Bool
True
pairwiseSymDistinct (a
x : [a]
xs) = a -> [a] -> SymBool
forall {t}. SymEq t => t -> [t] -> SymBool
go a
x [a]
xs SymBool -> SymBool -> SymBool
forall b. LogicalOp b => b -> b -> b
.&& [a] -> SymBool
forall a. SymEq a => [a] -> SymBool
pairwiseSymDistinct [a]
xs
where
go :: t -> [t] -> SymBool
go t
_ [] = Bool -> SymBool
forall c t. Solvable c t => c -> t
con Bool
True
go t
x' (t
y : [t]
ys) = t
x' t -> t -> SymBool
forall a. SymEq a => a -> a -> SymBool
./= t
y SymBool -> SymBool -> SymBool
forall b. LogicalOp b => b -> b -> b
.&& t -> [t] -> SymBool
go t
x' [t]
ys
class (forall a. (SymEq a) => SymEq (f a)) => SymEq1 f where
liftSymEq :: (a -> b -> SymBool) -> f a -> f b -> SymBool
symEq1 :: (SymEq a, SymEq1 f) => f a -> f a -> SymBool
symEq1 :: forall a (f :: * -> *).
(SymEq a, SymEq1 f) =>
f a -> f a -> SymBool
symEq1 = (a -> a -> SymBool) -> f a -> f a -> SymBool
forall a b. (a -> b -> SymBool) -> f a -> f b -> SymBool
forall (f :: * -> *) a b.
SymEq1 f =>
(a -> b -> SymBool) -> f a -> f b -> SymBool
liftSymEq a -> a -> SymBool
forall a. SymEq a => a -> a -> SymBool
(.==)
class (forall a. (SymEq a) => SymEq1 (f a)) => SymEq2 f where
liftSymEq2 ::
(a -> b -> SymBool) ->
(c -> d -> SymBool) ->
f a c ->
f b d ->
SymBool
symEq2 :: (SymEq a, SymEq b, SymEq2 f) => f a b -> f a b -> SymBool
symEq2 :: forall a b (f :: * -> * -> *).
(SymEq a, SymEq b, SymEq2 f) =>
f a b -> f a b -> SymBool
symEq2 = (a -> a -> SymBool)
-> (b -> b -> SymBool) -> f a b -> f a b -> SymBool
forall a b c d.
(a -> b -> SymBool)
-> (c -> d -> SymBool) -> f a c -> f b d -> SymBool
forall (f :: * -> * -> *) a b c d.
SymEq2 f =>
(a -> b -> SymBool)
-> (c -> d -> SymBool) -> f a c -> f b d -> SymBool
liftSymEq2 a -> a -> SymBool
forall a. SymEq a => a -> a -> SymBool
(.==) b -> b -> SymBool
forall a. SymEq a => a -> a -> SymBool
(.==)
data family SymEqArgs arity a b :: Type
data instance SymEqArgs Arity0 _ _ = SymEqArgs0
newtype instance SymEqArgs Arity1 a b = SymEqArgs1 (a -> b -> SymBool)
class GSymEq arity f where
gsymEq :: SymEqArgs arity a b -> f a -> f b -> SymBool
instance GSymEq arity V1 where
gsymEq :: forall a b. SymEqArgs arity a b -> V1 a -> V1 b -> SymBool
gsymEq SymEqArgs arity a b
_ V1 a
_ V1 b
_ = Bool -> SymBool
forall c t. Solvable c t => c -> t
con Bool
True
{-# INLINE gsymEq #-}
instance GSymEq arity U1 where
gsymEq :: forall a b. SymEqArgs arity a b -> U1 a -> U1 b -> SymBool
gsymEq SymEqArgs arity a b
_ U1 a
_ U1 b
_ = Bool -> SymBool
forall c t. Solvable c t => c -> t
con Bool
True
{-# INLINE gsymEq #-}
instance (GSymEq arity a, GSymEq arity b) => GSymEq arity (a :*: b) where
gsymEq :: forall a b.
SymEqArgs arity a b -> (:*:) a b a -> (:*:) a b b -> SymBool
gsymEq SymEqArgs arity a b
args (a a
a1 :*: b a
b1) (a b
a2 :*: b b
b2) = SymEqArgs arity a b -> a a -> a b -> SymBool
forall a b. SymEqArgs arity a b -> a a -> a b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs arity a b
args a a
a1 a b
a2 SymBool -> SymBool -> SymBool
forall b. LogicalOp b => b -> b -> b
.&& SymEqArgs arity a b -> b a -> b b -> SymBool
forall a b. SymEqArgs arity a b -> b a -> b b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs arity a b
args b a
b1 b b
b2
{-# INLINE gsymEq #-}
instance (GSymEq arity a, GSymEq arity b) => GSymEq arity (a :+: b) where
gsymEq :: forall a b.
SymEqArgs arity a b -> (:+:) a b a -> (:+:) a b b -> SymBool
gsymEq SymEqArgs arity a b
args (L1 a a
a1) (L1 a b
a2) = SymEqArgs arity a b -> a a -> a b -> SymBool
forall a b. SymEqArgs arity a b -> a a -> a b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs arity a b
args a a
a1 a b
a2
gsymEq SymEqArgs arity a b
args (R1 b a
b1) (R1 b b
b2) = SymEqArgs arity a b -> b a -> b b -> SymBool
forall a b. SymEqArgs arity a b -> b a -> b b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs arity a b
args b a
b1 b b
b2
gsymEq SymEqArgs arity a b
_ (:+:) a b a
_ (:+:) a b b
_ = Bool -> SymBool
forall c t. Solvable c t => c -> t
con Bool
False
{-# INLINE gsymEq #-}
instance (GSymEq arity a) => GSymEq arity (M1 i c a) where
gsymEq :: forall a b.
SymEqArgs arity a b -> M1 i c a a -> M1 i c a b -> SymBool
gsymEq SymEqArgs arity a b
args (M1 a a
a1) (M1 a b
a2) = SymEqArgs arity a b -> a a -> a b -> SymBool
forall a b. SymEqArgs arity a b -> a a -> a b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs arity a b
args a a
a1 a b
a2
{-# INLINE gsymEq #-}
instance (SymEq a) => GSymEq arity (K1 i a) where
gsymEq :: forall a b. SymEqArgs arity a b -> K1 i a a -> K1 i a b -> SymBool
gsymEq SymEqArgs arity a b
_ (K1 a
a) (K1 a
b) = a
a a -> a -> SymBool
forall a. SymEq a => a -> a -> SymBool
.== a
b
{-# INLINE gsymEq #-}
instance GSymEq Arity1 Par1 where
gsymEq :: forall a b. SymEqArgs Arity1 a b -> Par1 a -> Par1 b -> SymBool
gsymEq (SymEqArgs1 a -> b -> SymBool
e) (Par1 a
a) (Par1 b
b) = a -> b -> SymBool
e a
a b
b
{-# INLINE gsymEq #-}
instance (SymEq1 f) => GSymEq Arity1 (Rec1 f) where
gsymEq :: forall a b. SymEqArgs Arity1 a b -> Rec1 f a -> Rec1 f b -> SymBool
gsymEq (SymEqArgs1 a -> b -> SymBool
e) (Rec1 f a
a) (Rec1 f b
b) = (a -> b -> SymBool) -> f a -> f b -> SymBool
forall a b. (a -> b -> SymBool) -> f a -> f b -> SymBool
forall (f :: * -> *) a b.
SymEq1 f =>
(a -> b -> SymBool) -> f a -> f b -> SymBool
liftSymEq a -> b -> SymBool
e f a
a f b
b
{-# INLINE gsymEq #-}
instance (SymEq1 f, GSymEq Arity1 g) => GSymEq Arity1 (f :.: g) where
gsymEq :: forall a b.
SymEqArgs Arity1 a b -> (:.:) f g a -> (:.:) f g b -> SymBool
gsymEq SymEqArgs Arity1 a b
targs (Comp1 f (g a)
a) (Comp1 f (g b)
b) = (g a -> g b -> SymBool) -> f (g a) -> f (g b) -> SymBool
forall a b. (a -> b -> SymBool) -> f a -> f b -> SymBool
forall (f :: * -> *) a b.
SymEq1 f =>
(a -> b -> SymBool) -> f a -> f b -> SymBool
liftSymEq (SymEqArgs Arity1 a b -> g a -> g b -> SymBool
forall a b. SymEqArgs Arity1 a b -> g a -> g b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs Arity1 a b
targs) f (g a)
a f (g b)
b
{-# INLINE gsymEq #-}
instance (Generic a, GSymEq Arity0 (Rep a)) => SymEq (Default a) where
Default a
l .== :: Default a -> Default a -> SymBool
.== Default a
r = a -> a -> SymBool
forall a. (Generic a, GSymEq Arity0 (Rep a)) => a -> a -> SymBool
genericSymEq a
l a
r
{-# INLINE (.==) #-}
genericSymEq :: (Generic a, GSymEq Arity0 (Rep a)) => a -> a -> SymBool
genericSymEq :: forall a. (Generic a, GSymEq Arity0 (Rep a)) => a -> a -> SymBool
genericSymEq a
l a
r = SymEqArgs Arity0 Any Any -> Rep a Any -> Rep a Any -> SymBool
forall a b. SymEqArgs Arity0 a b -> Rep a a -> Rep a b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq SymEqArgs Arity0 Any Any
forall _ _. SymEqArgs Arity0 _ _
SymEqArgs0 (a -> Rep a Any
forall x. a -> Rep a x
forall a x. Generic a => a -> Rep a x
from a
l) (a -> Rep a Any
forall x. a -> Rep a x
forall a x. Generic a => a -> Rep a x
from a
r)
{-# INLINE genericSymEq #-}
instance (Generic1 f, GSymEq Arity1 (Rep1 f), SymEq a) => SymEq (Default1 f a) where
.== :: Default1 f a -> Default1 f a -> SymBool
(.==) = Default1 f a -> Default1 f a -> SymBool
forall a (f :: * -> *).
(SymEq a, SymEq1 f) =>
f a -> f a -> SymBool
symEq1
{-# INLINE (.==) #-}
instance (Generic1 f, GSymEq Arity1 (Rep1 f)) => SymEq1 (Default1 f) where
liftSymEq :: forall a b.
(a -> b -> SymBool) -> Default1 f a -> Default1 f b -> SymBool
liftSymEq a -> b -> SymBool
f (Default1 f a
l) (Default1 f b
r) = (a -> b -> SymBool) -> f a -> f b -> SymBool
forall (f :: * -> *) a b.
(Generic1 f, GSymEq Arity1 (Rep1 f)) =>
(a -> b -> SymBool) -> f a -> f b -> SymBool
genericLiftSymEq a -> b -> SymBool
f f a
l f b
r
{-# INLINE liftSymEq #-}
genericLiftSymEq ::
(Generic1 f, GSymEq Arity1 (Rep1 f)) =>
(a -> b -> SymBool) ->
f a ->
f b ->
SymBool
genericLiftSymEq :: forall (f :: * -> *) a b.
(Generic1 f, GSymEq Arity1 (Rep1 f)) =>
(a -> b -> SymBool) -> f a -> f b -> SymBool
genericLiftSymEq a -> b -> SymBool
f f a
l f b
r = SymEqArgs Arity1 a b -> Rep1 f a -> Rep1 f b -> SymBool
forall a b. SymEqArgs Arity1 a b -> Rep1 f a -> Rep1 f b -> SymBool
forall arity (f :: * -> *) a b.
GSymEq arity f =>
SymEqArgs arity a b -> f a -> f b -> SymBool
gsymEq ((a -> b -> SymBool) -> SymEqArgs Arity1 a b
forall a b. (a -> b -> SymBool) -> SymEqArgs Arity1 a b
SymEqArgs1 a -> b -> SymBool
f) (f a -> Rep1 f a
forall a. f a -> Rep1 f a
forall k (f :: k -> *) (a :: k). Generic1 f => f a -> Rep1 f a
from1 f a
l) (f b -> Rep1 f b
forall a. f a -> Rep1 f a
forall k (f :: k -> *) (a :: k). Generic1 f => f a -> Rep1 f a
from1 f b
r)
{-# INLINE genericLiftSymEq #-}