{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
module Grisette.Internal.TH.Derivation.DeriveMergeable
( deriveMergeable,
deriveMergeable1,
deriveMergeable2,
deriveMergeable3,
genMergeableAndGetMergingInfoResult,
genMergeable,
genMergeable',
genMergeableNoExistential,
genMergeableNoStrategy,
genMergeableList,
)
where
import Control.Monad (foldM, replicateM, zipWithM)
import qualified Data.Map as M
import Data.Maybe (catMaybes, isJust, mapMaybe)
import qualified Data.Set as S
import Data.Word (Word16, Word32, Word64, Word8)
import Grisette.Internal.Internal.Decl.Core.Data.Class.Mergeable
( Mergeable (rootStrategy),
Mergeable1 (liftRootStrategy),
Mergeable2 (liftRootStrategy2),
Mergeable3 (liftRootStrategy3),
MergingStrategy (NoStrategy, SimpleStrategy, SortedStrategy),
product2Strategy,
wrapStrategy,
)
import Grisette.Internal.TH.Derivation.Common
( CheckArgsResult
( CheckArgsResult,
argVars,
constructors,
keptVars
),
DeriveConfig (unconstrainedPositions, useNoStrategy),
checkArgs,
evalModeSpecializeList,
extraConstraint,
isVarUsedInFields,
specializeResult,
)
import Grisette.Internal.TH.Derivation.UnaryOpCommon
( FieldFunExp,
UnaryOpClassConfig
( UnaryOpClassConfig,
unaryOpAllowExistential,
unaryOpConfigs,
unaryOpContextNames,
unaryOpExtraVars,
unaryOpInstanceNames,
unaryOpInstanceTypeFromConfig
),
UnaryOpConfig (UnaryOpConfig),
UnaryOpFunConfig (genUnaryOpFun),
defaultUnaryOpInstanceTypeFromConfig,
genUnaryOpClass,
)
import Grisette.Internal.TH.Util (dataTypeHasExistential, integerE, mangleName)
import Language.Haskell.TH
( Bang (Bang),
Body (NormalB),
Clause (Clause),
Con (ForallC, GadtC),
Dec (DataD, FunD, InstanceD, PragmaD, SigD),
Exp (AppE, ConE, VarE),
Inline (Inline),
Kind,
Name,
Pat (SigP, VarP, WildP),
Phases (AllPhases),
Pragma (InlineP),
Pred,
Q,
RuleMatch (FunLike),
SourceStrictness (NoSourceStrictness),
SourceUnpackedness (NoSourceUnpackedness),
Type (AppT, ArrowT, ConT, ForallT, StarT, VarT),
appE,
caseE,
conE,
conT,
integerL,
lamE,
litP,
lookupTypeName,
mkName,
nameBase,
newName,
normalB,
recP,
sigP,
tupP,
varE,
varP,
varT,
wildP,
)
import Language.Haskell.TH.Datatype
( ConstructorInfo
( constructorContext,
constructorFields,
constructorName,
constructorVars
),
DatatypeInfo (datatypeCons, datatypeName, datatypeVars),
TypeSubstitution (applySubstitution, freeVariables),
reifyDatatype,
resolveTypeSynonyms,
tvName,
)
import Language.Haskell.TH.Datatype.TyVarBndr
( TyVarBndrUnit,
kindedTVSpecified,
plainTVFlag,
specifiedSpec,
)
import Language.Haskell.TH.Lib (clause, conP, litE, match, stringL)
import Type.Reflection (SomeTypeRep (SomeTypeRep), TypeRep, typeRep)
import Unsafe.Coerce (unsafeCoerce)
genMergingInfoCon ::
[TyVarBndrUnit] ->
Name ->
Bool ->
ConstructorInfo ->
Q (Con, Name, [Clause], [Clause], [Clause])
genMergingInfoCon :: [TyVarBndrUnit]
-> Name
-> Bool
-> ConstructorInfo
-> Q (Con, Name, [Clause], [Clause], [Clause])
genMergingInfoCon [TyVarBndrUnit]
dataTypeVars Name
tyName Bool
isLast ConstructorInfo
con = do
let conName :: String
conName = Name -> String
mangleName (Name -> String) -> Name -> String
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> Name
constructorName ConstructorInfo
con
let newConName :: Name
newConName = String -> Name
mkName (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$ String
conName String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
"MergingInfo"
let oriVars :: [TyVarBndrUnit]
oriVars = [TyVarBndrUnit]
dataTypeVars [TyVarBndrUnit] -> [TyVarBndrUnit] -> [TyVarBndrUnit]
forall a. [a] -> [a] -> [a]
++ ConstructorInfo -> [TyVarBndrUnit]
constructorVars ConstructorInfo
con
newDataTypeVars <- (TyVarBndrUnit -> Q Name) -> [TyVarBndrUnit] -> Q [Name]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse (String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName (String -> Q Name)
-> (TyVarBndrUnit -> String) -> TyVarBndrUnit -> Q Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> String
nameBase (Name -> String)
-> (TyVarBndrUnit -> Name) -> TyVarBndrUnit -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyVarBndrUnit -> Name
forall flag. TyVarBndr_ flag -> Name
tvName) [TyVarBndrUnit]
dataTypeVars
newConstructorVars <-
traverse (newName . nameBase . tvName) $ constructorVars con
let newNames = [Name]
newDataTypeVars [Name] -> [Name] -> [Name]
forall a. [a] -> [a] -> [a]
++ [Name]
newConstructorVars
let newVars = (Name -> Type) -> [Name] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Type
VarT [Name]
newNames
let substMap = [(Name, Type)] -> Map Name Type
forall k a. Ord k => [(k, a)] -> Map k a
M.fromList ([(Name, Type)] -> Map Name Type)
-> [(Name, Type)] -> Map Name Type
forall a b. (a -> b) -> a -> b
$ [Name] -> [Type] -> [(Name, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip (TyVarBndrUnit -> Name
forall flag. TyVarBndr_ flag -> Name
tvName (TyVarBndrUnit -> Name) -> [TyVarBndrUnit] -> [Name]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [TyVarBndrUnit]
oriVars) [Type]
newVars
let fields =
[Integer] -> [Type] -> [(Integer, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Integer
0 ..] ([Type] -> [(Integer, Type)]) -> [Type] -> [(Integer, Type)]
forall a b. (a -> b) -> a -> b
$
Map Name Type -> [Type] -> [Type]
forall a. TypeSubstitution a => Map Name Type -> a -> a
applySubstitution Map Name Type
substMap ([Type] -> [Type]) -> [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$
ConstructorInfo -> [Type]
constructorFields ConstructorInfo
con
let tyFields =
Type -> Type -> Type
AppT (Name -> Type
ConT ''TypeRep)
(Type -> Type) -> [Type] -> [Type]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Map Name Type -> [Type] -> [Type]
forall a. TypeSubstitution a => Map Name Type -> a -> a
applySubstitution
Map Name Type
substMap
((Name -> Type
VarT (Name -> Type) -> (TyVarBndrUnit -> Name) -> TyVarBndrUnit -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyVarBndrUnit -> Name
forall flag. TyVarBndr_ flag -> Name
tvName) (TyVarBndrUnit -> Type) -> [TyVarBndrUnit] -> [Type]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ConstructorInfo -> [TyVarBndrUnit]
constructorVars ConstructorInfo
con)
let strategyFields = ((Integer, Type) -> Type) -> [(Integer, Type)] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Type -> Type -> Type
AppT (Name -> Type
ConT ''MergingStrategy) (Type -> Type)
-> ((Integer, Type) -> Type) -> (Integer, Type) -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer, Type) -> Type
forall a b. (a, b) -> b
snd) [(Integer, Type)]
fields
tyFieldNamesL <- traverse (const $ newName "p") tyFields
tyFieldNamesR <- traverse (const $ newName "p") tyFields
let tyFieldPatsL = (Name -> Q Pat) -> [Name] -> [Q Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP [Name]
tyFieldNamesL
let tyFieldPatsR = (Name -> Q Pat) -> [Name] -> [Q Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP [Name]
tyFieldNamesR
let tyFieldVarsL = (Name -> Q Exp) -> [Name] -> [Q Exp]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE [Name]
tyFieldNamesL
let tyFieldVarsR = (Name -> Q Exp) -> [Name] -> [Q Exp]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE [Name]
tyFieldNamesR
let strategyFieldPats = Int -> Q Pat -> [Q Pat]
forall a. Int -> a -> [a]
replicate ([Type] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
strategyFields) Q Pat
forall (m :: * -> *). Quote m => m Pat
wildP
let patsL = [Q Pat]
tyFieldPatsL [Q Pat] -> [Q Pat] -> [Q Pat]
forall a. [a] -> [a] -> [a]
++ [Q Pat]
strategyFieldPats
let patsR = [Q Pat]
tyFieldPatsR [Q Pat] -> [Q Pat] -> [Q Pat]
forall a. [a] -> [a] -> [a]
++ [Q Pat]
strategyFieldPats
let allWildcards = (Q Pat -> Q Pat) -> [Q Pat] -> [Q Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Q Pat -> Q Pat -> Q Pat
forall a b. a -> b -> a
const Q Pat
forall (m :: * -> *). Quote m => m Pat
wildP) ([Q Pat] -> [Q Pat]) -> [Q Pat] -> [Q Pat]
forall a b. (a -> b) -> a -> b
$ [Q Pat]
tyFieldPatsL [Q Pat] -> [Q Pat] -> [Q Pat]
forall a. [a] -> [a] -> [a]
++ [Q Pat]
strategyFieldPats
let eqCont m Exp
l m Exp
r m Exp
cont =
[|
SomeTypeRep $m Exp
l == SomeTypeRep $m Exp
r
&& $m Exp
cont
|]
let eqExp =
(Q Exp -> (Q Exp, Q Exp) -> Q Exp)
-> Q Exp -> [(Q Exp, Q Exp)] -> Q Exp
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (\Q Exp
cont (Q Exp
l, Q Exp
r) -> Q Exp -> Q Exp -> Q Exp -> Q Exp
forall {m :: * -> *}. Quote m => m Exp -> m Exp -> m Exp -> m Exp
eqCont Q Exp
l Q Exp
r Q Exp
cont) (Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
conE 'True) ([(Q Exp, Q Exp)] -> Q Exp) -> [(Q Exp, Q Exp)] -> Q Exp
forall a b. (a -> b) -> a -> b
$
[Q Exp] -> [Q Exp] -> [(Q Exp, Q Exp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Q Exp]
tyFieldVarsL [Q Exp]
tyFieldVarsR
eqClause <-
clause
[conP newConName patsL, conP newConName patsR]
(normalB eqExp)
[]
let cmpCont m Exp
l m Exp
r m Exp
cont =
[|
case SomeTypeRep $m Exp
l `compare` SomeTypeRep $m Exp
r of
EQ -> $m Exp
cont
x -> x
|]
let cmpExp =
(Q Exp -> (Q Exp, Q Exp) -> Q Exp)
-> Q Exp -> [(Q Exp, Q Exp)] -> Q Exp
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (\Q Exp
cont (Q Exp
l, Q Exp
r) -> Q Exp -> Q Exp -> Q Exp -> Q Exp
forall {m :: * -> *}. Quote m => m Exp -> m Exp -> m Exp -> m Exp
cmpCont Q Exp
l Q Exp
r Q Exp
cont) (Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
conE 'EQ) ([(Q Exp, Q Exp)] -> Q Exp) -> [(Q Exp, Q Exp)] -> Q Exp
forall a b. (a -> b) -> a -> b
$
[Q Exp] -> [Q Exp] -> [(Q Exp, Q Exp)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Q Exp]
tyFieldVarsL [Q Exp]
tyFieldVarsR
cmpClause0 <-
clause
[conP newConName patsL, conP newConName patsR]
(normalB cmpExp)
[]
cmpClause1 <-
clause
[conP newConName allWildcards, wildP]
(normalB $ conE 'LT)
[]
cmpClause2 <-
clause
[wildP, conP newConName allWildcards]
(normalB $ conE 'GT)
[]
let cmpClauses =
if Bool
isLast
then [Clause
cmpClause0]
else [Clause
cmpClause0, Clause
cmpClause1, Clause
cmpClause2]
let showCont m Exp
t m Exp
cont =
[|$m Exp
cont <> " " <> show $m Exp
t|]
let showExp = (Q Exp -> Q Exp -> Q Exp) -> Q Exp -> [Q Exp] -> Q Exp
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl ((Q Exp -> Q Exp -> Q Exp) -> Q Exp -> Q Exp -> Q Exp
forall a b c. (a -> b -> c) -> b -> a -> c
flip Q Exp -> Q Exp -> Q Exp
forall {m :: * -> *}. Quote m => m Exp -> m Exp -> m Exp
showCont) (Lit -> Q Exp
forall (m :: * -> *). Quote m => Lit -> m Exp
litE (Lit -> Q Exp) -> Lit -> Q Exp
forall a b. (a -> b) -> a -> b
$ String -> Lit
stringL String
conName) [Q Exp]
tyFieldVarsL
showClause <-
clause
[conP newConName patsL]
(normalB showExp)
[]
let ctx = Map Name Type -> [Type] -> [Type]
forall a. TypeSubstitution a => Map Name Type -> a -> a
applySubstitution Map Name Type
substMap ([Type] -> [Type]) -> [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> [Type]
constructorContext ConstructorInfo
con
let ctxAndGadtUsedVars =
[Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type]
ctx)
Set Name -> Set Name -> Set Name
forall a. Semigroup a => a -> a -> a
<> [Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type]
tyFields)
Set Name -> Set Name -> Set Name
forall a. Semigroup a => a -> a -> a
<> [Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type]
strategyFields)
let isCtxAndGadtUsedVar Name
nm = Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
S.member Name
nm Set Name
ctxAndGadtUsedVars
return
( ForallC
( (`plainTVFlag` specifiedSpec)
<$> filter isCtxAndGadtUsedVar newDataTypeVars ++ newConstructorVars
)
ctx
$ GadtC
[newConName]
( (Bang NoSourceUnpackedness NoSourceStrictness,)
<$> tyFields ++ strategyFields
)
(ConT tyName),
newConName,
[eqClause],
cmpClauses,
[showClause]
)
data MergingInfoResult = MergingInfoResult
{ MergingInfoResult -> Name
_infoName :: Name,
MergingInfoResult -> [Name]
_conInfoNames :: [Name]
}
genMergingInfo :: Name -> Q (MergingInfoResult, [Dec])
genMergingInfo :: Name -> Q (MergingInfoResult, [Dec])
genMergingInfo Name
typName = do
d <- Name -> Q DatatypeInfo
reifyDatatype Name
typName
let originalName = Name -> String
mangleName (Name -> String) -> Name -> String
forall a b. (a -> b) -> a -> b
$ DatatypeInfo -> Name
datatypeName DatatypeInfo
d
let newName = String
originalName String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
"MergingInfo"
found <- lookupTypeName newName
let constructors = DatatypeInfo -> [ConstructorInfo]
datatypeCons DatatypeInfo
d
let name = String -> Name
mkName String
newName
r <-
if null constructors
then return []
else do
cons0 <-
traverse (genMergingInfoCon (datatypeVars d) name False) $
init constructors
consLast <-
genMergingInfoCon (datatypeVars d) name True $
last constructors
return $ cons0 ++ [consLast]
let cons = ((Con, Name, [Clause], [Clause], [Clause]) -> Con)
-> [(Con, Name, [Clause], [Clause], [Clause])] -> [Con]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\(Con
a, Name
_, [Clause]
_, [Clause]
_, [Clause]
_) -> Con
a) [(Con, Name, [Clause], [Clause], [Clause])]
r
let eqClauses =
((Con, Name, [Clause], [Clause], [Clause]) -> [Clause])
-> [(Con, Name, [Clause], [Clause], [Clause])] -> [Clause]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(Con
_, Name
_, [Clause]
a, [Clause]
_, [Clause]
_) -> [Clause]
a) [(Con, Name, [Clause], [Clause], [Clause])]
r
[Clause] -> [Clause] -> [Clause]
forall a. [a] -> [a] -> [a]
++ [ [Pat] -> Body -> [Dec] -> Clause
Clause [Pat
WildP, Pat
WildP] (Exp -> Body
NormalB (Exp -> Body) -> Exp -> Body
forall a b. (a -> b) -> a -> b
$ Name -> Exp
ConE 'False) []
| [ConstructorInfo] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [ConstructorInfo]
constructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1
]
let cmpClauses = ((Con, Name, [Clause], [Clause], [Clause]) -> [Clause])
-> [(Con, Name, [Clause], [Clause], [Clause])] -> [Clause]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(Con
_, Name
_, [Clause]
_, [Clause]
a, [Clause]
_) -> [Clause]
a) [(Con, Name, [Clause], [Clause], [Clause])]
r
let showClauses = ((Con, Name, [Clause], [Clause], [Clause]) -> [Clause])
-> [(Con, Name, [Clause], [Clause], [Clause])] -> [Clause]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(Con
_, Name
_, [Clause]
_, [Clause]
_, [Clause]
a) -> [Clause]
a) [(Con, Name, [Clause], [Clause], [Clause])]
r
return
( MergingInfoResult
name
(fmap (\(Con
_, Name
a, [Clause]
_, [Clause]
_, [Clause]
_) -> Name
a) r),
if isJust found
then []
else
[ DataD [] name [] Nothing cons [],
InstanceD
Nothing
[]
(ConT ''Eq `AppT` ConT name)
[FunD '(==) eqClauses],
InstanceD
Nothing
[]
(ConT ''Ord `AppT` ConT name)
[FunD 'compare cmpClauses],
InstanceD
Nothing
[]
(ConT ''Show `AppT` ConT name)
[FunD 'show showClauses]
]
)
genMergeableAndGetMergingInfoResult ::
DeriveConfig -> Name -> Int -> Q (MergingInfoResult, [Dec])
genMergeableAndGetMergingInfoResult :: DeriveConfig -> Name -> Int -> Q (MergingInfoResult, [Dec])
genMergeableAndGetMergingInfoResult DeriveConfig
deriveConfig Name
typName Int
n = do
(infoResult, infoDec) <- Name -> Q (MergingInfoResult, [Dec])
genMergingInfo Name
typName
(_, decs) <- genMergeable' deriveConfig infoResult typName n
return (infoResult, infoDec ++ decs)
constructMergingStrategyExp :: ConstructorInfo -> [Exp] -> Q Exp
constructMergingStrategyExp :: ConstructorInfo -> [Exp] -> Q Exp
constructMergingStrategyExp ConstructorInfo
_ [] = [|SimpleStrategy $ \_ t _ -> t|]
constructMergingStrategyExp ConstructorInfo
conInfo [Exp
x] = do
upname <- String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"a"
let unwrapPat = Name -> [Q Pat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP (ConstructorInfo -> Name
constructorName ConstructorInfo
conInfo) [Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP Name
upname]
let unwrapFun = [Q Pat] -> Q Exp -> Q Exp
forall (m :: * -> *). Quote m => [m Pat] -> m Exp -> m Exp
lamE [Q Pat
unwrapPat] (Q Exp -> Q Exp) -> Q Exp -> Q Exp
forall a b. (a -> b) -> a -> b
$ Q Exp -> Q Exp -> Q Exp
forall {m :: * -> *}. Quote m => m Exp -> m Exp -> m Exp
appE (Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE 'unsafeCoerce) (Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
upname)
[|
wrapStrategy
$(return x)
(unsafeCoerce . $(conE $ constructorName conInfo))
$unwrapFun
|]
constructMergingStrategyExp ConstructorInfo
conInfo [Exp]
l = do
let takeHalf :: [a] -> [a]
takeHalf [a]
l = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
take ([a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
l Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) [a]
l
let dropHalf :: [a] -> [a]
dropHalf [a]
l = Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
drop ([a] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
l Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) [a]
l
let num :: Int
num = [Exp] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Exp]
l
upnames <- Int -> Q Name -> Q [Name]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
num (Q Name -> Q [Name]) -> Q Name -> Q [Name]
forall a b. (a -> b) -> a -> b
$ String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"a"
let wrapPat1 [] = String -> m Pat
forall a. HasCallStack => String -> a
error String
"Should not happen"
wrapPat1 [Name
x] = Name -> m Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP Name
x
wrapPat1 [Name]
l = [m Pat] -> m Pat
forall (m :: * -> *). Quote m => [m Pat] -> m Pat
tupP [[Name] -> m Pat
wrapPat1 ([Name] -> [Name]
forall {a}. [a] -> [a]
takeHalf [Name]
l), [Name] -> m Pat
wrapPat1 ([Name] -> [Name]
forall {a}. [a] -> [a]
dropHalf [Name]
l)]
let wrapped = (Exp -> Exp -> Exp) -> Exp -> [Exp] -> Exp
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Exp -> Exp -> Exp
AppE (Name -> Exp
ConE (Name -> Exp) -> Name -> Exp
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> Name
constructorName ConstructorInfo
conInfo) ([Exp] -> Exp) -> [Exp] -> Exp
forall a b. (a -> b) -> a -> b
$ (Name -> Exp) -> [Name] -> [Exp]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Exp
VarE [Name]
upnames
let wrapFun =
[Q Pat] -> Q Exp -> Q Exp
forall (m :: * -> *). Quote m => [m Pat] -> m Exp -> m Exp
lamE
[[Name] -> Q Pat
forall {m :: * -> *}. Quote m => [Name] -> m Pat
wrapPat1 ([Name] -> [Name]
forall {a}. [a] -> [a]
takeHalf [Name]
upnames), [Name] -> Q Pat
forall {m :: * -> *}. Quote m => [Name] -> m Pat
wrapPat1 ([Name] -> [Name]
forall {a}. [a] -> [a]
dropHalf [Name]
upnames)]
[|unsafeCoerce ($(Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
wrapped))|]
let unwrapPat = Name -> [Q Pat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP (ConstructorInfo -> Name
constructorName ConstructorInfo
conInfo) ([Q Pat] -> Q Pat) -> [Q Pat] -> Q Pat
forall a b. (a -> b) -> a -> b
$ (Name -> Q Pat) -> [Name] -> [Q Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP [Name]
upnames
let unwrapExp1 [] = String -> m Exp
forall a. HasCallStack => String -> a
error String
"Should not happen"
unwrapExp1 [Name
x] = [|(unsafeCoerce $(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
x))|]
unwrapExp1 [Name]
l = [|($([Name] -> m Exp
unwrapExp1 ([Name] -> [Name]
forall {a}. [a] -> [a]
takeHalf [Name]
l)), $([Name] -> m Exp
unwrapExp1 ([Name] -> [Name]
forall {a}. [a] -> [a]
dropHalf [Name]
l)))|]
let unwrapFun = [Q Pat] -> Q Exp -> Q Exp
forall (m :: * -> *). Quote m => [m Pat] -> m Exp -> m Exp
lamE [Q Pat
unwrapPat] ([Name] -> Q Exp
forall {m :: * -> *}. Quote m => [Name] -> m Exp
unwrapExp1 [Name]
upnames)
let strategyx [] = String -> m Exp
forall a. HasCallStack => String -> a
error String
"Should not happen"
strategyx [Exp
x] = Exp -> m Exp
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
x
strategyx [Exp]
l =
[|product2Strategy (,) id $([Exp] -> m Exp
strategyx ([Exp] -> [Exp]
forall {a}. [a] -> [a]
takeHalf [Exp]
l)) $([Exp] -> m Exp
strategyx ([Exp] -> [Exp]
forall {a}. [a] -> [a]
dropHalf [Exp]
l))|]
[|
product2Strategy
$wrapFun
$unwrapFun
$(strategyx $ takeHalf l)
$(strategyx $ dropHalf l)
|]
genMergeFunClause' :: Name -> ConstructorInfo -> Q Clause
genMergeFunClause' :: Name -> ConstructorInfo -> Q Clause
genMergeFunClause' Name
conInfoName ConstructorInfo
con = do
let numExistential :: Int
numExistential = [TyVarBndrUnit] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([TyVarBndrUnit] -> Int) -> [TyVarBndrUnit] -> Int
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> [TyVarBndrUnit]
constructorVars ConstructorInfo
con
let numFields :: Int
numFields = [Type] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([Type] -> Int) -> [Type] -> Int
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> [Type]
constructorFields ConstructorInfo
con
let argWildCards :: [Q Pat]
argWildCards = Int -> Q Pat -> [Q Pat]
forall a. Int -> a -> [a]
replicate Int
numExistential Q Pat
forall (m :: * -> *). Quote m => m Pat
wildP :: [Q Pat]
pnames <- Int -> Q Name -> Q [Name]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
numFields (Q Name -> Q [Name]) -> Q Name -> Q [Name]
forall a b. (a -> b) -> a -> b
$ String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"s"
clause
([conP conInfoName $ argWildCards ++ fmap varP pnames])
(normalB (constructMergingStrategyExp con (map VarE pnames)))
[]
constructVarPats :: ConstructorInfo -> Q Pat
constructVarPats :: ConstructorInfo -> Q Pat
constructVarPats ConstructorInfo
conInfo = do
let fields :: [Type]
fields = ConstructorInfo -> [Type]
constructorFields ConstructorInfo
conInfo
capture :: Int -> m Pat
capture Int
n = Pat -> m Pat
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Pat -> m Pat) -> Pat -> m Pat
forall a b. (a -> b) -> a -> b
$ Pat -> Type -> Pat
SigP Pat
WildP (Type -> Pat) -> Type -> Pat
forall a b. (a -> b) -> a -> b
$ [Type]
fields [Type] -> Int -> Type
forall a. HasCallStack => [a] -> Int -> a
!! Int
n
Name -> [Q Pat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP (ConstructorInfo -> Name
constructorName ConstructorInfo
conInfo) ([Q Pat] -> Q Pat) -> [Q Pat] -> Q Pat
forall a b. (a -> b) -> a -> b
$ Int -> Q Pat
forall {m :: * -> *}. Monad m => Int -> m Pat
capture (Int -> Q Pat) -> [Int] -> [Q Pat]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int
0 .. [Type] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
fields Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1]
genMergingInfoFunClause' ::
[(Type, Kind)] -> Name -> ConstructorInfo -> Q Clause
genMergingInfoFunClause' :: [(Type, Type)] -> Name -> ConstructorInfo -> Q Clause
genMergingInfoFunClause' [(Type, Type)]
argTypes Name
conInfoName ConstructorInfo
con = do
let conVars :: [TyVarBndrUnit]
conVars = ConstructorInfo -> [TyVarBndrUnit]
constructorVars ConstructorInfo
con
capturedVarTyReps <-
(TyVarBndrUnit -> Q Exp) -> [TyVarBndrUnit] -> Q [Exp]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse (\TyVarBndrUnit
bndr -> [|typeRep @($(Name -> Q Type
forall (m :: * -> *). Quote m => Name -> m Type
varT (Name -> Q Type) -> Name -> Q Type
forall a b. (a -> b) -> a -> b
$ TyVarBndrUnit -> Name
forall flag. TyVarBndr_ flag -> Name
tvName TyVarBndrUnit
bndr))|]) [TyVarBndrUnit]
conVars
varPat <- constructVarPats con
let infoExpWithTypeReps = (Exp -> Exp -> Exp) -> Exp -> [Exp] -> Exp
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Exp -> Exp -> Exp
AppE (Name -> Exp
ConE Name
conInfoName) [Exp]
capturedVarTyReps
let fields = ConstructorInfo -> [Type]
constructorFields ConstructorInfo
con
let usedArgs = [Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Name] -> Set Name) -> [Name] -> Set Name
forall a b. (a -> b) -> a -> b
$ [Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type]
fields
strategyNames <-
traverse
( \(Type
ty, Type
_) ->
case Type
ty of
VarT Name
nm ->
if Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
S.member Name
nm Set Name
usedArgs
then do
pname <- String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"p"
return (nm, Just pname)
else (Name, Maybe Name) -> Q (Name, Maybe Name)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return ('undefined, Maybe Name
forall a. Maybe a
Nothing)
Type
_ -> (Name, Maybe Name) -> Q (Name, Maybe Name)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return ('undefined, Maybe Name
forall a. Maybe a
Nothing)
)
argTypes
let argToStrategyPat =
((Name, Maybe Name) -> Maybe (Name, Name))
-> [(Name, Maybe Name)] -> [(Name, Name)]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (\(Name
nm, Maybe Name
mpat) -> (Name -> (Name, Name)) -> Maybe Name -> Maybe (Name, Name)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Name
nm,) Maybe Name
mpat) [(Name, Maybe Name)]
strategyNames
let strategyPats = ((Name, Maybe Name) -> Pat) -> [(Name, Maybe Name)] -> [Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Pat -> (Name -> Pat) -> Maybe Name -> Pat
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Pat
WildP Name -> Pat
VarP (Maybe Name -> Pat)
-> ((Name, Maybe Name) -> Maybe Name) -> (Name, Maybe Name) -> Pat
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Name, Maybe Name) -> Maybe Name
forall a b. (a, b) -> b
snd) [(Name, Maybe Name)]
strategyNames
let argNameSet =
[Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Name] -> Set Name) -> [Name] -> Set Name
forall a b. (a -> b) -> a -> b
$
((Type, Type) -> Maybe Name) -> [(Type, Type)] -> [Name]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe
( \(Type
ty, Type
_) -> case Type
ty of
VarT Name
nm -> Name -> Maybe Name
forall a. a -> Maybe a
Just Name
nm
Type
_ -> Maybe Name
forall a. Maybe a
Nothing
)
[(Type, Type)]
argTypes
let containsArg :: Type -> Bool
containsArg Type
ty =
Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
S.intersection Set Name
argNameSet ([Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type
ty])) Set Name -> Set Name -> Bool
forall a. Eq a => a -> a -> Bool
/= Set Name
forall a. Set a
S.empty
let typeHasNoArg = Bool -> Bool
not (Bool -> Bool) -> (Type -> Bool) -> Type -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Bool
containsArg
let fieldStrategyExp Type
ty =
if Bool -> Bool
not (Type -> Bool
containsArg Type
ty)
then [|rootStrategy :: MergingStrategy $(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)|]
else case Type
ty of
Type
_
| Type -> Bool
typeHasNoArg Type
ty ->
[|rootStrategy :: MergingStrategy $(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)|]
AppT Type
a Type
b
| Type -> Bool
typeHasNoArg Type
a ->
[|
liftRootStrategy
$(Type -> m Exp
fieldStrategyExp Type
b) ::
MergingStrategy $(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)
|]
AppT (AppT Type
a Type
b) Type
c
| Type -> Bool
typeHasNoArg Type
a ->
[|
liftRootStrategy2
$(Type -> m Exp
fieldStrategyExp Type
b)
$(Type -> m Exp
fieldStrategyExp Type
c) ::
MergingStrategy $(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)
|]
AppT (AppT (AppT Type
a Type
b) Type
c) Type
d
| Type -> Bool
typeHasNoArg Type
a ->
[|
liftRootStrategy3
$(Type -> m Exp
fieldStrategyExp Type
b)
$(Type -> m Exp
fieldStrategyExp Type
c)
$(Type -> m Exp
fieldStrategyExp Type
d) ::
MergingStrategy $(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)
|]
VarT Name
nm -> do
case Name -> [(Name, Name)] -> Maybe Name
forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup Name
nm [(Name, Name)]
argToStrategyPat of
Just Name
pname -> Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
pname
Maybe Name
_ -> String -> m Exp
forall a. String -> m a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail String
"BUG: fieldStrategyExp"
Type
_ -> String -> m Exp
forall a. String -> m a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String -> m Exp) -> String -> m Exp
forall a b. (a -> b) -> a -> b
$ String
"fieldStrategyExp: unsupported type: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Type -> String
forall a. Show a => a -> String
show Type
ty
fieldStrategyExps <- traverse fieldStrategyExp fields
let infoExp = (Exp -> Exp -> Exp) -> Exp -> [Exp] -> Exp
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Exp -> Exp -> Exp
AppE Exp
infoExpWithTypeReps [Exp]
fieldStrategyExps
return $ Clause (strategyPats ++ [varPat]) (NormalB infoExp) []
mergeableFieldFunExp :: [Name] -> FieldFunExp
mergeableFieldFunExp :: [Name] -> FieldFunExp
mergeableFieldFunExp [Name]
unaryOpFunNames Map Name Name
argToFunPat Map Name [Name]
_ = Type -> Q Exp
forall {m :: * -> *}. (MonadFail m, Quote m) => Type -> m Exp
go
where
go :: Type -> m Exp
go Type
ty = do
let allArgNames :: Set Name
allArgNames = Map Name Name -> Set Name
forall k a. Map k a -> Set k
M.keysSet Map Name Name
argToFunPat
let typeHasNoArg :: a -> Bool
typeHasNoArg a
ty =
[Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([a] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [a
ty])
Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
`S.intersection` Set Name
allArgNames
Set Name -> Set Name -> Bool
forall a. Eq a => a -> a -> Bool
== Set Name
forall a. Set a
S.empty
let fun0a :: Type -> m Exp
fun0a Type
a = [|$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name] -> Name
forall a. HasCallStack => [a] -> a
head [Name]
unaryOpFunNames) @($(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
a))|]
fun1a :: Type -> Type -> m Exp
fun1a Type
a Type
b = [|$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name]
unaryOpFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
1) @($(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
a)) $(Type -> m Exp
go Type
b)|]
fun2a :: Type -> Type -> Type -> m Exp
fun2a Type
a Type
b Type
c =
[|
$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name]
unaryOpFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
2)
@($(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
a))
$(Type -> m Exp
go Type
b)
$(Type -> m Exp
go Type
c)
|]
fun3a :: Type -> Type -> Type -> Type -> m Exp
fun3a Type
a Type
b Type
c Type
d =
[|
$(Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE (Name -> m Exp) -> Name -> m Exp
forall a b. (a -> b) -> a -> b
$ [Name]
unaryOpFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
3)
@($(Type -> m Type
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
a))
$(Type -> m Exp
go Type
b)
$(Type -> m Exp
go Type
c)
$(Type -> m Exp
go Type
d)
|]
case Type
ty of
AppT (AppT (AppT a :: Type
a@(VarT Name
_) Type
b) Type
c) Type
d -> Type -> Type -> Type -> Type -> m Exp
fun3a Type
a Type
b Type
c Type
d
AppT (AppT a :: Type
a@(VarT Name
_) Type
b) Type
c -> Type -> Type -> Type -> m Exp
fun2a Type
a Type
b Type
c
AppT a :: Type
a@(VarT Name
_) Type
b -> Type -> Type -> m Exp
fun1a Type
a Type
b
Type
_ | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
ty -> Type -> m Exp
forall {m :: * -> *}. Quote m => Type -> m Exp
fun0a Type
ty
AppT Type
a Type
b | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
a -> Type -> Type -> m Exp
fun1a Type
a Type
b
AppT (AppT Type
a Type
b) Type
c | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
a -> Type -> Type -> Type -> m Exp
fun2a Type
a Type
b Type
c
AppT (AppT (AppT Type
a Type
b) Type
c) Type
d | Type -> Bool
forall {a}. TypeSubstitution a => a -> Bool
typeHasNoArg Type
a -> Type -> Type -> Type -> Type -> m Exp
fun3a Type
a Type
b Type
c Type
d
VarT Name
nm -> case Name -> Map Name Name -> Maybe Name
forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup Name
nm Map Name Name
argToFunPat of
Just Name
pname -> Name -> m Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
pname
Maybe Name
_ -> String -> m Exp
forall a. String -> m a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String -> m Exp) -> String -> m Exp
forall a b. (a -> b) -> a -> b
$ String
"defaultFieldFunExp: unsupported type: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Type -> String
forall a. Show a => a -> String
show Type
ty
Type
_ -> String -> m Exp
forall a. String -> m a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String -> m Exp) -> String -> m Exp
forall a b. (a -> b) -> a -> b
$ String
"defaultFieldFunExp: unsupported type: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Type -> String
forall a. Show a => a -> String
show Type
ty
mergeableInstanceNames :: [Name]
mergeableInstanceNames :: [Name]
mergeableInstanceNames =
[ ''Mergeable,
''Mergeable1,
''Mergeable2,
''Mergeable3
]
getMergeableInstanceName :: Int -> Name
getMergeableInstanceName :: Int -> Name
getMergeableInstanceName Int
n = [Name]
mergeableInstanceNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
n
rootStrategyFunNames :: [Name]
rootStrategyFunNames :: [Name]
rootStrategyFunNames =
[ 'rootStrategy,
'liftRootStrategy,
'liftRootStrategy2,
'liftRootStrategy3
]
getMergeableFunName :: Int -> Name
getMergeableFunName :: Int -> Name
getMergeableFunName Int
n = [Name]
rootStrategyFunNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
n
mergeableNoExistentialConfig :: UnaryOpClassConfig
mergeableNoExistentialConfig :: UnaryOpClassConfig
mergeableNoExistentialConfig =
UnaryOpClassConfig
{ unaryOpConfigs :: [UnaryOpConfig]
unaryOpConfigs =
[ MergeableNoExistentialConfig -> [Name] -> UnaryOpConfig
forall config.
UnaryOpFunConfig config =>
config -> [Name] -> UnaryOpConfig
UnaryOpConfig
MergeableNoExistentialConfig
{ mergeableNoExistentialFun :: FieldFunExp
mergeableNoExistentialFun =
[Name] -> FieldFunExp
mergeableFieldFunExp [Name]
rootStrategyFunNames
}
[Name]
rootStrategyFunNames
],
unaryOpInstanceNames :: [Name]
unaryOpInstanceNames =
[''Mergeable, ''Mergeable1, ''Mergeable2, ''Mergeable3],
unaryOpExtraVars :: DeriveConfig -> Q [(Type, Type)]
unaryOpExtraVars = Q [(Type, Type)] -> DeriveConfig -> Q [(Type, Type)]
forall a b. a -> b -> a
const (Q [(Type, Type)] -> DeriveConfig -> Q [(Type, Type)])
-> Q [(Type, Type)] -> DeriveConfig -> Q [(Type, Type)]
forall a b. (a -> b) -> a -> b
$ [(Type, Type)] -> Q [(Type, Type)]
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return [],
unaryOpInstanceTypeFromConfig :: DeriveConfig -> [(Type, Type)] -> [(Type, Type)] -> Name -> Q Type
unaryOpInstanceTypeFromConfig = DeriveConfig -> [(Type, Type)] -> [(Type, Type)] -> Name -> Q Type
defaultUnaryOpInstanceTypeFromConfig,
unaryOpAllowExistential :: Bool
unaryOpAllowExistential = Bool
False,
unaryOpContextNames :: Maybe [Name]
unaryOpContextNames = Maybe [Name]
forall a. Maybe a
Nothing
}
newtype MergeableNoExistentialConfig = MergeableNoExistentialConfig
{ MergeableNoExistentialConfig -> FieldFunExp
mergeableNoExistentialFun :: FieldFunExp
}
instance UnaryOpFunConfig MergeableNoExistentialConfig where
genUnaryOpFun :: DeriveConfig
-> MergeableNoExistentialConfig
-> [Name]
-> Int
-> [(Type, Type)]
-> [(Type, Type)]
-> [(Type, Type)]
-> (Name -> Bool)
-> [ConstructorInfo]
-> Q Dec
genUnaryOpFun
DeriveConfig
_
MergeableNoExistentialConfig {FieldFunExp
mergeableNoExistentialFun :: MergeableNoExistentialConfig -> FieldFunExp
mergeableNoExistentialFun :: FieldFunExp
..}
[Name]
funNames
Int
n
[(Type, Type)]
_
[(Type, Type)]
_
[(Type, Type)]
argTypes
Name -> Bool
_
[ConstructorInfo]
constructors = do
allFields <-
(Type -> Q Type) -> [Type] -> Q [Type]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Type -> Q Type
resolveTypeSynonyms ([Type] -> Q [Type]) -> [Type] -> Q [Type]
forall a b. (a -> b) -> a -> b
$
(ConstructorInfo -> [Type]) -> [ConstructorInfo] -> [Type]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap ConstructorInfo -> [Type]
constructorFields [ConstructorInfo]
constructors
let usedArgs = [Name] -> Set Name
forall a. Ord a => [a] -> Set a
S.fromList ([Name] -> Set Name) -> [Name] -> Set Name
forall a b. (a -> b) -> a -> b
$ [Type] -> [Name]
forall a. TypeSubstitution a => a -> [Name]
freeVariables [Type]
allFields
args <-
traverse
( \(Type
ty, Type
_) -> do
case Type
ty of
VarT Name
nm ->
if Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
S.member Name
nm Set Name
usedArgs
then do
pname <- String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"p"
return (nm, Just pname)
else (Name, Maybe Name) -> Q (Name, Maybe Name)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return ('undefined, Maybe Name
forall a. Maybe a
Nothing)
Type
_ -> (Name, Maybe Name) -> Q (Name, Maybe Name)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return ('undefined, Maybe Name
forall a. Maybe a
Nothing)
)
argTypes
let argToFunPat =
[(Name, Name)] -> Map Name Name
forall k a. Ord k => [(k, a)] -> Map k a
M.fromList ([(Name, Name)] -> Map Name Name)
-> [(Name, Name)] -> Map Name Name
forall a b. (a -> b) -> a -> b
$ ((Name, Maybe Name) -> Maybe (Name, Name))
-> [(Name, Maybe Name)] -> [(Name, Name)]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (\(Name
nm, Maybe Name
mpat) -> (Name -> (Name, Name)) -> Maybe Name -> Maybe (Name, Name)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Name
nm,) Maybe Name
mpat) [(Name, Maybe Name)]
args
let funPats = ((Name, Maybe Name) -> Pat) -> [(Name, Maybe Name)] -> [Pat]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Pat -> (Name -> Pat) -> Maybe Name -> Pat
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Pat
WildP Name -> Pat
VarP (Maybe Name -> Pat)
-> ((Name, Maybe Name) -> Maybe Name) -> (Name, Maybe Name) -> Pat
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Name, Maybe Name) -> Maybe Name
forall a b. (a, b) -> b
snd) [(Name, Maybe Name)]
args
let genAuxFunExp ConstructorInfo
conInfo = do
fields <- (Type -> Q Type) -> [Type] -> Q [Type]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Type -> Q Type
resolveTypeSynonyms ([Type] -> Q [Type]) -> [Type] -> Q [Type]
forall a b. (a -> b) -> a -> b
$ ConstructorInfo -> [Type]
constructorFields ConstructorInfo
conInfo
defaultFieldFunExps <-
traverse
(mergeableNoExistentialFun argToFunPat M.empty)
fields
constructMergingStrategyExp conInfo defaultFieldFunExps
auxExps <- mapM genAuxFunExp constructors
funExp <- case auxExps of
[] -> [|NoStrategy|]
[Exp
singleExp] -> Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
singleExp
[Exp]
_ -> do
p <- String -> Q Name
forall (m :: * -> *). Quote m => String -> m Name
newName String
"p"
let numConstructors = [ConstructorInfo] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [ConstructorInfo]
constructors
let getIdx a
i =
if Int
numConstructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
2
then if a
i a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
0 then [|False|] else [|True|]
else a -> Q Exp
forall a. Integral a => a -> Q Exp
integerE a
i
let getIdxPat Integer
i =
if Int
numConstructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
2
then Name -> [m Pat] -> m Pat
forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP (if Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 then 'False else 'True) []
else do
let w8Bound :: Int
w8Bound = Word8 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Bounded a => a
maxBound @Word8)
let w16Bound :: Int
w16Bound = Word16 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Bounded a => a
maxBound @Word16)
let w32Bound :: Int
w32Bound = Word32 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Bounded a => a
maxBound @Word32)
let w64Bound :: Int
w64Bound = Word64 -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Bounded a => a
maxBound @Word64)
m Pat -> m Type -> m Pat
forall (m :: * -> *). Quote m => m Pat -> m Type -> m Pat
sigP
(Lit -> m Pat
forall (m :: * -> *). Quote m => Lit -> m Pat
litP (Integer -> Lit
integerL Integer
i))
( Name -> m Type
forall (m :: * -> *). Quote m => Name -> m Type
conT (Name -> m Type) -> Name -> m Type
forall a b. (a -> b) -> a -> b
$
if
| Int
numConstructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
w8Bound Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 -> ''Word8
| Int
numConstructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
w16Bound Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 -> ''Word16
| Int
numConstructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
w32Bound Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 -> ''Word32
| Int
numConstructors Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
w64Bound Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 -> ''Word64
| Bool
otherwise -> ''Integer
)
let idxFun =
[Q Pat] -> Q Exp -> Q Exp
forall (m :: * -> *). Quote m => [m Pat] -> m Exp -> m Exp
lamE [Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP Name
p] (Q Exp -> Q Exp) -> Q Exp -> Q Exp
forall a b. (a -> b) -> a -> b
$
Q Exp -> [Q Match] -> Q Exp
forall (m :: * -> *). Quote m => m Exp -> [m Match] -> m Exp
caseE
(Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
p)
( (Integer -> ConstructorInfo -> Q Match)
-> [Integer] -> [ConstructorInfo] -> [Q Match]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
( \Integer
conIdx ConstructorInfo
conInfo -> do
Q Pat -> Q Body -> [Q Dec] -> Q Match
forall (m :: * -> *).
Quote m =>
m Pat -> m Body -> [m Dec] -> m Match
match
(Name -> [Q FieldPat] -> Q Pat
forall (m :: * -> *). Quote m => Name -> [m FieldPat] -> m Pat
recP (ConstructorInfo -> Name
constructorName ConstructorInfo
conInfo) [])
(Q Exp -> Q Body
forall (m :: * -> *). Quote m => m Exp -> m Body
normalB (Integer -> Q Exp
forall a. Integral a => a -> Q Exp
getIdx Integer
conIdx))
[]
)
[Integer
0 ..]
[ConstructorInfo]
constructors
)
let auxFun =
[Q Pat] -> Q Exp -> Q Exp
forall (m :: * -> *). Quote m => [m Pat] -> m Exp -> m Exp
lamE [Name -> Q Pat
forall (m :: * -> *). Quote m => Name -> m Pat
varP Name
p] (Q Exp -> Q Exp) -> Q Exp -> Q Exp
forall a b. (a -> b) -> a -> b
$
Q Exp -> [Q Match] -> Q Exp
forall (m :: * -> *). Quote m => m Exp -> [m Match] -> m Exp
caseE
(Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
p)
( (Integer -> Exp -> Q Match) -> [Integer] -> [Exp] -> [Q Match]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith
( \Integer
conIdx Exp
exp -> do
Q Pat -> Q Body -> [Q Dec] -> Q Match
forall (m :: * -> *).
Quote m =>
m Pat -> m Body -> [m Dec] -> m Match
match
(Integer -> Q Pat
forall {m :: * -> *}. Quote m => Integer -> m Pat
getIdxPat Integer
conIdx)
(Q Exp -> Q Body
forall (m :: * -> *). Quote m => m Exp -> m Body
normalB (Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
exp))
[]
)
[Integer
0 ..]
[Exp]
auxExps
[Q Match] -> [Q Match] -> [Q Match]
forall a. [a] -> [a] -> [a]
++ [Q Pat -> Q Body -> [Q Dec] -> Q Match
forall (m :: * -> *).
Quote m =>
m Pat -> m Body -> [m Dec] -> m Match
match Q Pat
forall (m :: * -> *). Quote m => m Pat
wildP (Q Exp -> Q Body
forall (m :: * -> *). Quote m => m Exp -> m Body
normalB [|undefined|]) []]
)
[|
SortedStrategy $idxFun $auxFun
|]
let instanceFunName = [Name]
funNames [Name] -> Int -> Name
forall a. HasCallStack => [a] -> Int -> a
!! Int
n
return $
FunD
instanceFunName
[ Clause
funPats
(NormalB funExp)
[]
]
genMergeable' ::
DeriveConfig -> MergingInfoResult -> Name -> Int -> Q (Name, [Dec])
genMergeable' :: DeriveConfig -> MergingInfoResult -> Name -> Int -> Q (Name, [Dec])
genMergeable' DeriveConfig
deriveConfig (MergingInfoResult Name
infoName [Name]
conInfoNames) Name
typName Int
n = do
result@CheckArgsResult {..} <-
[(Int, EvalModeTag)] -> CheckArgsResult -> Q CheckArgsResult
specializeResult (DeriveConfig -> [(Int, EvalModeTag)]
evalModeSpecializeList DeriveConfig
deriveConfig)
(CheckArgsResult -> Q CheckArgsResult)
-> Q CheckArgsResult -> Q CheckArgsResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< String -> Int -> Name -> Bool -> Int -> Q CheckArgsResult
checkArgs String
"Mergeable" Int
3 Name
typName Bool
True Int
n
d <- reifyDatatype typName
let ctxForVar :: (Type, Kind) -> Q (Maybe Pred)
ctxForVar (Type
ty, Type
kind) = case Type
kind of
Type
StarT -> Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> Q Type -> Q (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [t|Mergeable $(Type -> Q Type
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)|]
AppT (AppT Type
ArrowT Type
StarT) Type
StarT ->
Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> Q Type -> Q (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [t|Mergeable1 $(Type -> Q Type
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)|]
AppT (AppT (AppT Type
ArrowT Type
StarT) Type
StarT) Type
StarT ->
Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> Q Type -> Q (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [t|Mergeable2 $(Type -> Q Type
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)|]
AppT (AppT (AppT (AppT Type
ArrowT Type
StarT) Type
StarT) Type
StarT) Type
StarT ->
Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> Q Type -> Q (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [t|Mergeable3 $(Type -> Q Type
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty)|]
AppT (AppT (AppT (AppT Type
ArrowT Type
StarT) Type
StarT) Type
StarT) Type
_ ->
String -> Q (Maybe Type)
forall a. String -> Q a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail (String -> Q (Maybe Type)) -> String -> Q (Maybe Type)
forall a b. (a -> b) -> a -> b
$ String
"Unsupported kind: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Type -> String
forall a. Show a => a -> String
show Type
kind
Type
_ -> Maybe Type -> Q (Maybe Type)
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Type
forall a. Maybe a
Nothing
let isTypeUsedInFields (VarT Name
nm) = CheckArgsResult -> Name -> Bool
isVarUsedInFields CheckArgsResult
result Name
nm
isTypeUsedInFields Type
_ = Bool
False
mergeableContexts <-
traverse ctxForVar $
filter (isTypeUsedInFields . fst) $
fmap snd $
filter (not . (`elem` unconstrainedPositions deriveConfig) . fst) $
zip [0 ..] keptVars
let instanceName = Int -> Name
getMergeableInstanceName Int
n
let instanceHead = Name -> Type
ConT Name
instanceName
extraPreds <-
extraConstraint
deriveConfig
typName
instanceName
[]
keptVars
constructors
let targetType =
(Type -> (Type, Type) -> Type) -> Type -> [(Type, Type)] -> Type
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl
(\Type
ty (Type
var, Type
_) -> Type -> Type -> Type
AppT Type
ty Type
var)
(Name -> Type
ConT Name
typName)
([(Type, Type)]
keptVars [(Type, Type)] -> [(Type, Type)] -> [(Type, Type)]
forall a. [a] -> [a] -> [a]
++ [(Type, Type)]
argVars)
let infoType = Name -> Type
ConT Name
infoName
let mergingInfoFunFinalType = Type -> Type -> Type
AppT (Type -> Type -> Type
AppT Type
ArrowT Type
targetType) Type
infoType
let mergingInfoFunTypeWithoutCtx =
((Type, Type) -> Type -> Type) -> Type -> [(Type, Type)] -> Type
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr
(((Type -> Type -> Type
AppT (Type -> Type -> Type) -> (Type -> Type) -> Type -> Type -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Type -> Type
AppT Type
ArrowT) (Type -> Type -> Type) -> (Type -> Type) -> Type -> Type -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Type -> Type
AppT (Name -> Type
ConT ''MergingStrategy)) (Type -> Type -> Type)
-> ((Type, Type) -> Type) -> (Type, Type) -> Type -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Type, Type) -> Type
forall a b. (a, b) -> a
fst)
Type
mergingInfoFunFinalType
[(Type, Type)]
argVars
let mergingInfoFunType =
[TyVarBndr Specificity] -> [Type] -> Type -> Type
ForallT
( ((Type, Type) -> Maybe (TyVarBndr Specificity))
-> [(Type, Type)] -> [TyVarBndr Specificity]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe
( \(Type
ty, Type
knd) -> case Type
ty of
VarT Name
nm -> TyVarBndr Specificity -> Maybe (TyVarBndr Specificity)
forall a. a -> Maybe a
Just (TyVarBndr Specificity -> Maybe (TyVarBndr Specificity))
-> TyVarBndr Specificity -> Maybe (TyVarBndr Specificity)
forall a b. (a -> b) -> a -> b
$ Name -> Type -> TyVarBndr Specificity
kindedTVSpecified Name
nm Type
knd
Type
_ -> Maybe (TyVarBndr Specificity)
forall a. Maybe a
Nothing
)
([(Type, Type)] -> [TyVarBndr Specificity])
-> [(Type, Type)] -> [TyVarBndr Specificity]
forall a b. (a -> b) -> a -> b
$ [(Type, Type)]
keptVars [(Type, Type)] -> [(Type, Type)] -> [(Type, Type)]
forall a. [a] -> [a] -> [a]
++ [(Type, Type)]
argVars
)
([Type]
extraPreds [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ [Maybe Type] -> [Type]
forall a. [Maybe a] -> [a]
catMaybes [Maybe Type]
mergeableContexts)
Type
mergingInfoFunTypeWithoutCtx
let mangledName = Name -> String
mangleName (DatatypeInfo -> Name
datatypeName DatatypeInfo
d)
let mergingInfoFunName =
String -> Name
mkName (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$
String
"mergingInfo"
String -> String -> String
forall a. Semigroup a => a -> a -> a
<> (if Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 then Int -> String
forall a. Show a => a -> String
show Int
n else String
"")
String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
mangledName
let mergingInfoFunSigD = Name -> Type -> Dec
SigD Name
mergingInfoFunName Type
mergingInfoFunType
clauses <-
traverse (uncurry (genMergingInfoFunClause' argVars)) $
zip conInfoNames constructors
let mergingInfoFunDec = Name -> [Clause] -> Dec
FunD Name
mergingInfoFunName [Clause]
clauses
let mergeFunType =
Type -> Type -> Type
AppT (Type -> Type -> Type
AppT Type
ArrowT Type
infoType) (Type -> Type -> Type
AppT (Name -> Type
ConT ''MergingStrategy) Type
targetType)
let mergeFunName =
String -> Name
mkName (String -> Name) -> String -> Name
forall a b. (a -> b) -> a -> b
$
String
"merge"
String -> String -> String
forall a. Semigroup a => a -> a -> a
<> (if Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 then Int -> String
forall a. Show a => a -> String
show Int
n else String
"")
String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
mangledName
let mergeFunSigD = Name -> Type -> Dec
SigD Name
mergeFunName Type
mergeFunType
mergeFunClauses <- zipWithM genMergeFunClause' conInfoNames constructors
let mergeFunDec = Name -> [Clause] -> Dec
FunD Name
mergeFunName [Clause]
mergeFunClauses
let instanceType =
Type -> Type -> Type
AppT
Type
instanceHead
((Type -> Type -> Type) -> Type -> [Type] -> Type
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Type -> Type -> Type
AppT (Name -> Type
ConT Name
typName) ([Type] -> Type) -> [Type] -> Type
forall a b. (a -> b) -> a -> b
$ ((Type, Type) -> Type) -> [(Type, Type)] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Type, Type) -> Type
forall a b. (a, b) -> a
fst [(Type, Type)]
keptVars)
let mergeInstanceFunName = Int -> Name
getMergeableFunName Int
n
mergeInstanceFunPatNames <- replicateM n $ newName "rootStrategy"
let mergeInstanceFunPats = Name -> Pat
VarP (Name -> Pat) -> [Name] -> [Pat]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Name]
mergeInstanceFunPatNames
mergeInstanceFunBody <-
[|
SortedStrategy
$( foldM
(\Exp
exp Name
name -> Q Exp -> Q Exp -> Q Exp
forall {m :: * -> *}. Quote m => m Exp -> m Exp -> m Exp
appE (Exp -> Q Exp
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return Exp
exp) (Q Exp -> Q Exp) -> Q Exp -> Q Exp
forall a b. (a -> b) -> a -> b
$ Name -> Q Exp
forall (m :: * -> *). Quote m => Name -> m Exp
varE Name
name)
(VarE mergingInfoFunName)
mergeInstanceFunPatNames
)
$(varE mergeFunName)
|]
let mergeInstanceFunClause =
[Pat] -> Body -> [Dec] -> Clause
Clause [Pat]
mergeInstanceFunPats (Exp -> Body
NormalB Exp
mergeInstanceFunBody) []
return
( mergingInfoFunName,
[ PragmaD (InlineP mergingInfoFunName Inline FunLike AllPhases),
mergingInfoFunSigD,
mergingInfoFunDec,
PragmaD (InlineP mergeFunName Inline FunLike AllPhases),
mergeFunSigD,
mergeFunDec,
InstanceD
Nothing
(extraPreds ++ catMaybes mergeableContexts)
instanceType
[FunD mergeInstanceFunName [mergeInstanceFunClause]]
]
)
genMergeableNoExistential :: DeriveConfig -> Name -> Int -> Q [Dec]
genMergeableNoExistential :: DeriveConfig -> Name -> Int -> Q [Dec]
genMergeableNoExistential DeriveConfig
deriveConfig Name
typName Int
n = do
DeriveConfig -> UnaryOpClassConfig -> Int -> Name -> Q [Dec]
genUnaryOpClass DeriveConfig
deriveConfig UnaryOpClassConfig
mergeableNoExistentialConfig Int
n Name
typName
genMergeableNoStrategy :: DeriveConfig -> Name -> Int -> Q [Dec]
genMergeableNoStrategy :: DeriveConfig -> Name -> Int -> Q [Dec]
genMergeableNoStrategy DeriveConfig
deriveConfig Name
typName Int
n = do
CheckArgsResult {..} <-
[(Int, EvalModeTag)] -> CheckArgsResult -> Q CheckArgsResult
specializeResult (DeriveConfig -> [(Int, EvalModeTag)]
evalModeSpecializeList DeriveConfig
deriveConfig)
(CheckArgsResult -> Q CheckArgsResult)
-> Q CheckArgsResult -> Q CheckArgsResult
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< String -> Int -> Name -> Bool -> Int -> Q CheckArgsResult
checkArgs String
"Mergeable" Int
3 Name
typName Bool
True Int
n
let instanceName = Int -> Name
getMergeableInstanceName Int
n
let instanceHead = Name -> Type
ConT Name
instanceName
let instanceType =
Type -> Type -> Type
AppT
Type
instanceHead
((Type -> Type -> Type) -> Type -> [Type] -> Type
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl Type -> Type -> Type
AppT (Name -> Type
ConT Name
typName) ([Type] -> Type) -> [Type] -> Type
forall a b. (a -> b) -> a -> b
$ ((Type, Type) -> Type) -> [(Type, Type)] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Type, Type) -> Type
forall a b. (a, b) -> a
fst [(Type, Type)]
keptVars)
let mergeInstanceFunName = Int -> Name
getMergeableFunName Int
n
let mergeInstanceFunClause =
[Pat] -> Body -> [Dec] -> Clause
Clause (Int -> Pat -> [Pat]
forall a. Int -> a -> [a]
replicate Int
n Pat
WildP) (Exp -> Body
NormalB (Name -> Exp
ConE 'NoStrategy)) []
return
[ InstanceD
Nothing
[]
instanceType
[FunD mergeInstanceFunName [mergeInstanceFunClause]]
]
genMergeable :: DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable :: DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable DeriveConfig
deriveConfig Name
typName Int
n = do
hasExistential <- Name -> Q Bool
dataTypeHasExistential Name
typName
if
| useNoStrategy deriveConfig ->
genMergeableNoStrategy deriveConfig typName n
| hasExistential -> do
(infoResult, infoDec) <- genMergingInfo typName
(_, decs) <- genMergeable' deriveConfig infoResult typName n
return $ infoDec ++ decs
| otherwise -> genMergeableNoExistential deriveConfig typName n
genMergeableList :: DeriveConfig -> Name -> [Int] -> Q [Dec]
genMergeableList :: DeriveConfig -> Name -> [Int] -> Q [Dec]
genMergeableList DeriveConfig
_ Name
_ [] = [Dec] -> Q [Dec]
forall a. a -> Q a
forall (m :: * -> *) a. Monad m => a -> m a
return []
genMergeableList DeriveConfig
deriveConfig Name
typName [Int
n] = DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable DeriveConfig
deriveConfig Name
typName Int
n
genMergeableList DeriveConfig
deriveConfig Name
typName l :: [Int]
l@(Int
n : [Int]
ns) = do
hasExistential <- Name -> Q Bool
dataTypeHasExistential Name
typName
if
| useNoStrategy deriveConfig ->
concat <$> traverse (genMergeableNoStrategy deriveConfig typName) l
| hasExistential -> do
(info, dn) <-
genMergeableAndGetMergingInfoResult
deriveConfig
typName
n
dns <-
traverse (genMergeable' deriveConfig info typName) ns
return $ dn ++ concatMap snd dns
| otherwise ->
concat <$> traverse (genMergeableNoExistential deriveConfig typName) l
deriveMergeable :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable DeriveConfig
deriveConfig Name
nm = DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable DeriveConfig
deriveConfig Name
nm Int
0
deriveMergeable1 :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable1 :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable1 DeriveConfig
deriveConfig Name
nm = DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable DeriveConfig
deriveConfig Name
nm Int
1
deriveMergeable2 :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable2 :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable2 DeriveConfig
deriveConfig Name
nm = DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable DeriveConfig
deriveConfig Name
nm Int
2
deriveMergeable3 :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable3 :: DeriveConfig -> Name -> Q [Dec]
deriveMergeable3 DeriveConfig
deriveConfig Name
nm = DeriveConfig -> Name -> Int -> Q [Dec]
genMergeable DeriveConfig
deriveConfig Name
nm Int
3