{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Grisette.Internal.SymPrim.Prim.Internal.Instances.PEvalShiftTerm
( pevalFiniteBitsSymShiftShiftLeftTerm,
pevalFiniteBitsSymShiftShiftRightTerm,
)
where
import Data.Bits (Bits (isSigned, shiftR, zeroBits), FiniteBits (finiteBitSize))
import Data.Proxy (Proxy (Proxy))
import GHC.TypeLits (KnownNat, type (<=))
import Grisette.Internal.Core.Data.Class.SymShift (SymShift (symShift))
import Grisette.Internal.SymPrim.BV (IntN, WordN)
import Grisette.Internal.SymPrim.Prim.Internal.Instances.SupportedPrim
( bvIsNonZeroFromGEq1,
)
import Grisette.Internal.SymPrim.Prim.Internal.Term
( PEvalShiftTerm
( pevalShiftLeftTerm,
pevalShiftRightTerm,
withSbvShiftTermConstraint
),
SupportedNonFuncPrim (withNonFuncPrim),
SupportedPrim,
Term,
conTerm,
shiftLeftTerm,
shiftRightTerm,
pattern ConTerm,
pattern SupportedTerm,
)
import Grisette.Internal.SymPrim.Prim.Internal.Unfold (unaryUnfoldOnce)
pevalFiniteBitsSymShiftShiftLeftTerm ::
forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a ->
Term a ->
Term a
pevalFiniteBitsSymShiftShiftLeftTerm :: forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a -> Term a -> Term a
pevalFiniteBitsSymShiftShiftLeftTerm t :: Term a
t@Term a
SupportedTerm Term a
n =
PartialRuleUnary a a -> TotalRuleUnary a a -> TotalRuleUnary a a
forall a b.
SupportedPrim b =>
PartialRuleUnary a b -> TotalRuleUnary a b -> TotalRuleUnary a b
unaryUnfoldOnce
(Term a -> PartialRuleUnary a a
forall a.
(Integral a, SymShift a, FiniteBits a, SupportedPrim a) =>
Term a -> Term a -> Maybe (Term a)
`doPevalFiniteBitsSymShiftShiftLeftTerm` Term a
n)
(Term a -> TotalRuleUnary a a
forall a. PEvalShiftTerm a => Term a -> Term a -> Term a
`shiftLeftTerm` Term a
n)
Term a
t
doPevalFiniteBitsSymShiftShiftLeftTerm ::
forall a.
(Integral a, SymShift a, FiniteBits a, SupportedPrim a) =>
Term a ->
Term a ->
Maybe (Term a)
doPevalFiniteBitsSymShiftShiftLeftTerm :: forall a.
(Integral a, SymShift a, FiniteBits a, SupportedPrim a) =>
Term a -> Term a -> Maybe (Term a)
doPevalFiniteBitsSymShiftShiftLeftTerm (ConTerm a
a) (ConTerm a
n)
| a
n a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
0 =
if (a -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n :: Integer) Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize a
n)
then Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm a
forall a. Bits a => a
zeroBits
else Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm (a -> Term a) -> a -> Term a
forall a b. (a -> b) -> a -> b
$ a -> a -> a
forall a. SymShift a => a -> a -> a
symShift a
a a
n
doPevalFiniteBitsSymShiftShiftLeftTerm Term a
x (ConTerm a
0) = Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just Term a
x
doPevalFiniteBitsSymShiftShiftLeftTerm Term a
_ (ConTerm a
n)
| a
n a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
0 Bool -> Bool -> Bool
&& (a -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n :: Integer) Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize a
n) =
Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm a
forall a. Bits a => a
zeroBits
doPevalFiniteBitsSymShiftShiftLeftTerm Term a
_ Term a
_ = Maybe (Term a)
forall a. Maybe a
Nothing
pevalFiniteBitsSymShiftShiftRightTerm ::
forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a ->
Term a ->
Term a
pevalFiniteBitsSymShiftShiftRightTerm :: forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a -> Term a -> Term a
pevalFiniteBitsSymShiftShiftRightTerm t :: Term a
t@Term a
SupportedTerm Term a
n =
PartialRuleUnary a a -> TotalRuleUnary a a -> TotalRuleUnary a a
forall a b.
SupportedPrim b =>
PartialRuleUnary a b -> TotalRuleUnary a b -> TotalRuleUnary a b
unaryUnfoldOnce
(Term a -> PartialRuleUnary a a
forall a.
(Integral a, SymShift a, FiniteBits a, SupportedPrim a) =>
Term a -> Term a -> Maybe (Term a)
`doPevalFiniteBitsSymShiftShiftRightTerm` Term a
n)
(Term a -> TotalRuleUnary a a
forall a. PEvalShiftTerm a => Term a -> Term a -> Term a
`shiftRightTerm` Term a
n)
Term a
t
doPevalFiniteBitsSymShiftShiftRightTerm ::
forall a.
(Integral a, SymShift a, FiniteBits a, SupportedPrim a) =>
Term a ->
Term a ->
Maybe (Term a)
doPevalFiniteBitsSymShiftShiftRightTerm :: forall a.
(Integral a, SymShift a, FiniteBits a, SupportedPrim a) =>
Term a -> Term a -> Maybe (Term a)
doPevalFiniteBitsSymShiftShiftRightTerm (ConTerm a
a) (ConTerm a
n)
| a
n a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
0 Bool -> Bool -> Bool
&& Bool -> Bool
not (a -> Bool
forall a. Bits a => a -> Bool
isSigned a
a) =
if (a -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n :: Integer) Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize a
n)
then Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm a
forall a. Bits a => a
zeroBits
else Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm (a -> Term a) -> a -> Term a
forall a b. (a -> b) -> a -> b
$ a -> Int -> a
forall a. Bits a => a -> Int -> a
shiftR a
a (a -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n)
doPevalFiniteBitsSymShiftShiftRightTerm (ConTerm a
a) (ConTerm a
n)
| a
n a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
0 = Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm (a -> Term a) -> a -> Term a
forall a b. (a -> b) -> a -> b
$ a -> a -> a
forall a. SymShift a => a -> a -> a
symShift a
a (-a
n)
doPevalFiniteBitsSymShiftShiftRightTerm Term a
x (ConTerm a
0) = Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just Term a
x
doPevalFiniteBitsSymShiftShiftRightTerm Term a
_ (ConTerm a
n)
| Bool -> Bool
not (a -> Bool
forall a. Bits a => a -> Bool
isSigned a
n)
Bool -> Bool -> Bool
&& (a -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral a
n :: Integer) Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize a
n) =
Term a -> Maybe (Term a)
forall a. a -> Maybe a
Just (Term a -> Maybe (Term a)) -> Term a -> Maybe (Term a)
forall a b. (a -> b) -> a -> b
$ a -> Term a
forall t. SupportedPrim t => t -> Term t
conTerm a
forall a. Bits a => a
zeroBits
doPevalFiniteBitsSymShiftShiftRightTerm Term a
_ Term a
_ = Maybe (Term a)
forall a. Maybe a
Nothing
instance (KnownNat n, 1 <= n) => PEvalShiftTerm (IntN n) where
pevalShiftLeftTerm :: Term (IntN n) -> Term (IntN n) -> Term (IntN n)
pevalShiftLeftTerm = Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a -> Term a -> Term a
pevalFiniteBitsSymShiftShiftLeftTerm
pevalShiftRightTerm :: Term (IntN n) -> Term (IntN n) -> Term (IntN n)
pevalShiftRightTerm = Term (IntN n) -> Term (IntN n) -> Term (IntN n)
forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a -> Term a -> Term a
pevalFiniteBitsSymShiftShiftRightTerm
withSbvShiftTermConstraint :: forall r. (SIntegral (NonFuncSBVBaseType (IntN n)) => r) -> r
withSbvShiftTermConstraint SIntegral (NonFuncSBVBaseType (IntN n)) => r
r =
Proxy n -> (BVIsNonZero n => r) -> r
forall (w :: Nat) r (proxy :: Nat -> *).
(1 <= w) =>
proxy w -> (BVIsNonZero w => r) -> r
bvIsNonZeroFromGEq1 (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n) ((BVIsNonZero n => r) -> r) -> (BVIsNonZero n => r) -> r
forall a b. (a -> b) -> a -> b
$
forall a r.
SupportedNonFuncPrim a =>
(NonFuncPrimConstraint a => r) -> r
withNonFuncPrim @(IntN n) r
NonFuncPrimConstraint (IntN n) => r
SIntegral (NonFuncSBVBaseType (IntN n)) => r
r
instance (KnownNat n, 1 <= n) => PEvalShiftTerm (WordN n) where
pevalShiftLeftTerm :: Term (WordN n) -> Term (WordN n) -> Term (WordN n)
pevalShiftLeftTerm = Term (WordN n) -> Term (WordN n) -> Term (WordN n)
forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a -> Term a -> Term a
pevalFiniteBitsSymShiftShiftLeftTerm
pevalShiftRightTerm :: Term (WordN n) -> Term (WordN n) -> Term (WordN n)
pevalShiftRightTerm = Term (WordN n) -> Term (WordN n) -> Term (WordN n)
forall a.
(Integral a, SymShift a, FiniteBits a, PEvalShiftTerm a) =>
Term a -> Term a -> Term a
pevalFiniteBitsSymShiftShiftRightTerm
withSbvShiftTermConstraint :: forall r. (SIntegral (NonFuncSBVBaseType (WordN n)) => r) -> r
withSbvShiftTermConstraint SIntegral (NonFuncSBVBaseType (WordN n)) => r
r =
Proxy n -> (BVIsNonZero n => r) -> r
forall (w :: Nat) r (proxy :: Nat -> *).
(1 <= w) =>
proxy w -> (BVIsNonZero w => r) -> r
bvIsNonZeroFromGEq1 (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n) ((BVIsNonZero n => r) -> r) -> (BVIsNonZero n => r) -> r
forall a b. (a -> b) -> a -> b
$
forall a r.
SupportedNonFuncPrim a =>
(NonFuncPrimConstraint a => r) -> r
withNonFuncPrim @(WordN n) r
NonFuncPrimConstraint (WordN n) => r
SIntegral (NonFuncSBVBaseType (WordN n)) => r
r