Grisette: Symbolic Co

Functional Program

POPL 2023

T

mpl

18

lation as a
o Library

Sirui Lu (University of Washington)

aiPLSE W

Rastislav Bodik (Google Brain)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Google Research

1

Symbolic compilation enables new tools

Verification P(X) {
find a failing oo
input }
assert(safe(P(x))

dx.-safe(P(x))

Symbolic

. SMT solver
compiler
Jh.vx.safe(P,(x))
Synthesis P(X) {
find code that v =h // hole
meets the spec coe Ideally, we translate all program
} paths to a single formula
assert(safe(P(x))

2
Credit to “Solver-Aided Programming for All,” ICFP’19, Emina Torlak

Symbolic execution: path explosion but easy to solve

{a — a,b— 5,
: : : r— 1,y+— 0}
void f(int a, int b) {
int x =1, y = 0; a # 0 a=0
if (a !'=0) {
y=X+13 {yHQJ {yHO}
} — 0 B£0 5:9/”\\ﬁjf
X =2 %* (a+b); [:Cl—>2(oz—|—ﬁ)}[x— 1 J{THQ(OHLB)J[x— 1 J
}
assert (x l=y); a7 0 A v a=0A v
} N, B=0A B=0A
(ta;cj) con Lt-lon 2(044—5) —0 2(05+5) ~0
negated) assertion v X Buggy!
King-style symbolic execution Unsat means no bug 3

(CACM 1976), Klee (OSDI’08), etc

Bounded model checking: compact but harder to solve

void f(int a, int b) {
int x =1, y = 0;
if (a !'=0) {
y = X + 1;
}
if (b == 0) {
X =2 %* (a+ b);
}

assert (x !=y);

¥

Bounded model checking,
CBMC (TACAS’04), Sketch (ASPLOS’04), etc

{a — a,b— [,
x— 1y~ 0}
a7l =0 State merging
[Y 2 J [y+— 0 J with ite operator

-

”
-
-

[yl—>ite(oz7é0,2,0) }f"/
—0__— — B#0
[azl—fQ(oz—i—B)J [x—1 J

[x s ite(= 0,2(c + B), 1)}

ite(ar # 0,2,0) = ite(8 = 0,2(a + 5), 1)
Satisfiable with {a = 0,3 = 0}

No path explosion, but results can be harder to
solve (Kuznetsov et al., PLDI'12) .

Our contributions

A new representation of symbolic values:
 Smaller formula.
* 3.7x average speedup over the state of the art.
* Verified in Coq.

Symbolic compilation as a typed, purely functional library:
* Areusable symbolic compiler named Grisette.
* Open-source Haskell implementation.

Reusable symbolic compilers

a DSL program Reusable: verification/synthesis tools for

1 free with an interpreter, with Rosette’s
/ symbolic compiler reused

DSL interpreter

Rosette: makes a subset Efficiency: Novel symbolic
of Racket symbolic representation balancing evaluation

efficiency and formula quality.

host language (Racket) "\

!

constraints Tools with Rosette: Cosette
(CIDR’17), Ferrite (PLDI’17), Bonsai

Rosette system (Onward!’13, PLDI’14, POPL’22) (POPL’'18), Jitterbug (OSDI’20), ...

Reusable symbolic compilers

a DSLirogram Confusion: What constructs accept

symbolic values? Hard to debug.
(previous attempt: typed rosette, POPL'18)

DSL interpreter

Not easily portable: Rosette is a Racket-

Rosette: makes a subset e .
specific implementation.

of Racket symbolic

host language (Racket , ,
guage ()"\ Functional but not pure: assertions are

1 compiled using a global state.
constraints Want a small, purely functional core

7

Rosette system (Onward!’13, PLDI’14, POPL'22)

Reusable symbolic compiler as a library

Source DSL programs Purely functional: Compose with widely

|

available FP constructs for rich features,

such as using Either for assertions
Interpreter for the source

language Portable: symbolic representation as a

. e 1s eneric data structure.
Symbolic compilation library 5

(Grisette)

Host language (Haskell, Scala, etc.)\ Safe: Unsafe use Of.hc.)St Ianguage
constructs are prohibited with types.

Constraints
Challenges: to merge multiple paths functionally, we need a new symbolic representation.

(A pure version of Rosette’s representation runs 14x slower than Rosette on one benchrﬁark)

Design goals

We want a system that has good
e Efficiency (speed of compilation)
* Effectiveness (solvability of formulas)

 Usability (programming experience)

Outline

* The representation of symbolic values
How good are the formulas created with a purely functional symbolic value?

* Empirical evaluation

* The programming interface
What is the programming experience with a purely functional symbolic value?

10

Outline

* The representation of symbolic values

An example program

a = 1if then |
b = if then |
d =a++ b
e = head d

Operations on lists

] else [
] else [

» %3] Symbolic values are in

» X6]

Complex values, e.g., lists

12

MEG (Mutually Exclusive Guards)

_/\G

dyviec =

head can be applied to the branches

a = 1if

b = if

d=a++ Db

e = head d
[[x1,x4]

then [
then [

[ite(condl, x1,x2),- -]
| [x2,x%3,x%5,x%6]

] else [x2,x3]
] else [x5,x6]

if cl Ac2
if (c1 A —c2)V (c2 A —cl)
if —cl A —c2

MEG is the key design for Rosette and

MultiSE (FSE’15) to support advanced

features easily

7 new nodes created

mutual exclusiveness
duplicates conditions

13

ORG (ORdered Guards)

a = if then [x1] else [x2,x3]
b = if then [x4] else [x5,x6] 7 new nodes created
d =a++ b
e = head d
[[x1,x4] if c1 Ac2 .
. . mutual exclusiveness
dyieg = [ite(condl,x1,%x2),---1 if (c1 A =c2) V (c2 A —cl) duplicates conditions
\ [x2,x3,x5,x6] if —cl1 A —c2
([[x1,x4] if cl A c2
dore = 9 [ite(condl, x1,x2),---1| else if clV c2
| [x2,%3,%5,%6] otherwise If /else if/otherwise

guards can be ordered and implicitly mutually exclusive with smaller terms

Sources of duplications in MEG vs. ORG

if

Original <

(4

Reordered <

then 4 else if

if
if
if
if

if
if
if
if

MEG

c4d

c3 N\ —c4d

c2 A\ —c3 N\ —chd
—c2 A —c3 A\ —c4

—c2 A —c3 AN\ —c4d
c2 N\ —c3 AN\ —céd
c3 N\ —cé

cd

then 3 else

(4

ORG
if
else if
else if

otherwise

if
else if
else if

otherwise

if then 2 else 1

cd MEG: duplication
c3 when making
c2 guards disjoint

—c2 A\ c3 A\ —cd
—c3 /\ —cd

—cd ORG: duplication
caused by reordering

15

Merging two ORG containers

if cond then a else b

(1
How to merge? <3
\2
)
reorder to align values < 3
\2
(1
merged result= {3
\2

if
else if

otherwise

if
else if

otherwise

if
else if

otherwise

condl

cond?2

condl

cond?2

(9

if
else if

otherwise

if
else if

otherwise

cond3
cond4

—cond3 /\ cond4

—cond4

ite(cond, condl, —cond3 A cond4)

ite(cond, cond2, ~cond4)

Merging two sorted ORG container

we need to reorder and create complex conditions every time we merge
we can keep ORG containers sorted, and reduce the need for reordering

Sortedness is a representation invariant => Further merging avoids reordering

Merging complex types in ORG

merging is inefficient when ORG containers are big
use hierarchical encoding to allow sub-containers to be treated atomically
when the values are complex

Direct generalization

((1,1,u)
(1,2,v)
(2,3,w)
(2,4,x)

L (9,2,y)

2/

if

else if
else if
else if

otherwise

cl
c2
c3
c4

Hierarchical encoding

7 if cl

$ 1o else if c2

\(9,2,y) otherwise

t1:<'(1,1,u) if c11’
\ (1,2,v) otherwise
((2,3,w) if c21’

lg = <

\ (2,4,x) otherwise

Preserves worst-case linear-time in # of symbolic values in ORG (proven with Coq)

Outline

* Empirical evaluation

Empirical evaluation

RQ1: is Grisette more efficient than the state-of-the-art?

 evaluation time (symbolic compilation)
* solving time

RQ2: why do Grisette's constraints solve faster?

Evaluation settings

Four symbolic compilation systems:
e Grisette with ORG
» Grisette with functional MEG (i.e., assertions propagated, not in global state)
e Rosette 3 (pre-POPL'22)
e Rosette 4 (post-POPL'22)

Five Rosette-based tools (six benchmarks) ported to Grisette:

* Ferrite (ASPLOS’16): file system crash model verifier and sync call synthesizer
IFCL (PLDI’14): information flow control verification and synthesizer
Fluidics (ASPLOS’19): microfluidics manipulation program synthesizer
Cosette (CIDR’17): SQL equivalence checker
Bonsai (POPL'17) for DOT (scala) & LetPoly: type system soundness checker

RQ1: Grisette is more efficient than SOTA,
both compilation and solving time

Compilation Solving
© 402 = | 0.9x
S B Grisette = mmm Grisette
g mam Grisette (MEG) B = Grisette (MEG)
2 mmm Rosette 3 g = Rosette 3
2 mmm Rosette 4 ° W= Rosette 4
= E 10’
2 10’ g
-] =
S ?
(O] ©
3 II A
®©
E | .
S 10° 210" m me | II | II |
= Ferrite ICFL Fluidics Cosette DOT LetPon Ferrite ICFL Fluidics Cosette DOT LetPoly
Project Project
6.1x over Grisette (MEG) 2.4x over Grisette (MEG)
13.0x over Rosette 3 5.5x over Rosette 3

22

14.1x over Rosette 4 5.7x over Rosette 4

RQ2: faster solving can be a result of smaller
terms

Letpoly
103 ® Grisette ®
. Grisette (MEG)
c% , ® Rosette 3 o‘
2 10 ® Rosette 4 T
%
= Cosette -
O ® O ¢
£ 10 @ @
-;7 o o L
(-
s °
3 10 o
¢
10° 10" 10° 10°

term size (log scale) 23

Outline

* The programming interface

A minimal synthesizer

Program space: synthesize a function \x -> X + ¢
Some example programs in the space: \x -> x + 1,
\X -> X + 2

Specification: |/O pair (2, 5)

Expect result: \x -> x + 3

A minimal synthesizer

UnionM is an ORG container representing a
symbolic set of expressions

data SymExpr -- Symbolic candidate prOgram space
= SIntValue SymInteger
| SAdd (UnionM SymExpr) (UnionM SymExpr) Define DSL syntax
| SMul (UnionM SymExpr) (UnionM SymExpr)
deriving ...

interpret :: SProgram -> SymInteger
interpret (SIntValue c) = c
interpret (SAdd x y) = interpretU x + interpretU y DSL interpreter.

interpret (SMul x y) = interpretU x * interpretU y Interprets simultaneously all

_ , ASTs in the space.
interpretU :: UnionM Sprogram -> SymInteger

interpretU = onUnion interpret

™ onUnion lifts 'interpret' to ORGs of ASTs %

A symbolic integer variable to be solved

A minimal synthesizer

programSpace :: SymInteger -> SymExpr
programSpace x = SAdd (return x) (return "c")

executableProgramSpace :: Integer -> SymInteger
executableProgramSpace = interpret . programSpace . toSym

quickExample :: I0 ()

quickExample = do
let constraint = executableProgramSpace 2 ==~ 5
Right model <- solve solverConfig constraint

print $ evaluateSym False model (programSpace "x")
-- SMul {SIntValue x} {SIntValue 3}

let synthesizedProgram :: Integer -> Integer =
evaluateSymToCon model . executableProgramSpace
print $ synthesizedProgram 20 -- 60

Define the program space
\ X -> X + C

Make the program space
executable

Call the solver with 1/0
pair (2,5)

Print the synthesized
program \x -> x + 3

Get concrete synthesized
program

27

Discussion 1: Stateful programming with Grisette

Monadic ORG container

UnionM operations are
generalized with type classes.

StateT state UnionM val

Example:
StateT requires ~30 lines of code.
Want an imperative DSL? Write a StateT-based interpreter.
Free monad + combinators and functors for trampolines (~250 lines of code)
mtl transformers (mostly <30 lines of code each)
Want coroutines? Use trampolines or delimited continuations.

28

Discussion 2: Additional benefits

Static types:
e constrain the symbolic representation for performance tuning
e ex: improved Cosette performance for an additional 8.7x speedup

Purely functional:
* memoization (1.2 — 7.5x compilation speed up on 4 projects)
* parallelization seems also possible

See the paper for more details

Grisette: Symbolic Compilation as a Functional
Programming Library

https://github.com/Isrcz/grisette

Thanks!

https://hackage.haskell.org/package/grisette

Sirui Lu
Rastislav Bodik 'RP| SE W PAULGALLEN SCHOOL Google Research

OF COMPUTER SCIENCE & ENGINEERING

https://github.com/lsrcz/grisette
https://hackage.haskell.org/package/grisette

	Slide 1: Grisette: Symbolic Compilation as a Functional Programming Library
	Slide 2: Symbolic compilation enables new tools
	Slide 3: Symbolic execution: path explosion but easy to solve
	Slide 4: Bounded model checking: compact but harder to solve
	Slide 5: Our contributions
	Slide 6: Reusable symbolic compilers
	Slide 7: Reusable symbolic compilers
	Slide 8: Reusable symbolic compiler as a library
	Slide 9: Design goals
	Slide 10: Outline
	Slide 11: Outline
	Slide 12: An example program
	Slide 13: MEG (Mutually Exclusive Guards)
	Slide 14: ORG (ORdered Guards)
	Slide 15: Sources of duplications in MEG vs. ORG
	Slide 16: Merging two ORG containers
	Slide 17: Merging two sorted ORG container
	Slide 18: Merging complex types in ORG
	Slide 19: Outline
	Slide 20: Empirical evaluation
	Slide 21: Evaluation settings
	Slide 22: RQ1: Grisette is more efficient than SOTA, in both compilation and solving time
	Slide 23: RQ2: faster solving can be a result of smaller terms
	Slide 24: Outline
	Slide 25: A minimal synthesizer
	Slide 26: A minimal synthesizer
	Slide 27: A minimal synthesizer
	Slide 28: Discussion 1: Stateful programming with Grisette
	Slide 29: Discussion 2: Additional benefits
	Slide 30: Grisette: Symbolic Compilation as a Functional Programming Library

