
Grisette: Symbolic Compilation as a
Functional Programming Library

POPL 2023

Sirui Lu (University of Washington)

Rastislav Bodík (Google Brain)

1

Symbolic compilation enables new tools

SMT solver

Credit to “Solver-Aided Programming for All,” ICFP’19, Emina Torlak

P(x) {
...

}
assert(safe(P(x))

P(x) {
v = h // hole
...

}
assert(safe(P(x))

Verification
find a failing

input

Synthesis
find code that

meets the spec Ideally, we translate all program
paths to a single formula

2

Symbolic
compiler

∃x.¬safe(P(x))

∃h.∀x.safe(Ph(x))

Symbolic execution: path explosion but easy to solve

King-style symbolic execution
(CACM 1976), Klee (OSDI’08), etc

void f(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = x + 1;
}
if (b == 0) {

x = 2 * (a + b);
}
assert (x != y);

}

✘Buggy!

Path condition

(negated) assertion

✔ ✔

✔
Unsat means no bug 3

Bounded model checking: compact but harder to solve

No path explosion, but results can be harder to
solve (Kuznetsov et al., PLDI’12)

State merging
with ite operator

4

Satisfiable with

void f(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = x + 1;
}
if (b == 0) {

x = 2 * (a + b);
}
assert (x != y);

}

Bounded model checking,
CBMC (TACAS’04), Sketch (ASPLOS’04), etc

Our contributions

A new representation of symbolic values:
• Smaller formula.
• 3.7x average speedup over the state of the art.
• Verified in Coq.

Symbolic compilation as a typed, purely functional library:
• A reusable symbolic compiler named Grisette.
• Open-source Haskell implementation.

5

Reusable symbolic compilers

Reusable: verification/synthesis tools for
free with an interpreter, with Rosette’s
symbolic compiler reused

Tools with Rosette: Cosette
(CIDR’17), Ferrite (PLDI’17), Bonsai
(POPL’18), Jitterbug (OSDI’20), …

host language (Racket)

a DSL program

constraints

DSL interpreter

Rosette: makes a subset
of Racket symbolic

Rosette system (Onward!’13, PLDI’14, POPL’22)
6

Efficiency: Novel symbolic
representation balancing evaluation
efficiency and formula quality.

Reusable symbolic compilers

7

host language (Racket)

constraints

DSL interpreter

Rosette: makes a subset
of Racket symbolic

Rosette system (Onward!’13, PLDI’14, POPL’22)

Not easily portable: Rosette is a Racket-
specific implementation.

Confusion: What constructs accept
symbolic values? Hard to debug.
(previous attempt: typed rosette, POPL’18)

Functional but not pure: assertions are
compiled using a global state.
Want a small, purely functional core

a DSL program

Reusable symbolic compiler as a library

Host language (Haskell, Scala, etc.)

Interpreter for the source
language

Symbolic compilation library
(Grisette)

Purely functional: Compose with widely
available FP constructs for rich features,
such as using Either for assertions

Safe: Unsafe use of host language
constructs are prohibited with types.

Portable: symbolic representation as a
generic data structure.

Challenges: to merge multiple paths functionally, we need a new symbolic representation.
(A pure version of Rosette’s representation runs 14x slower than Rosette on one benchmark)

8

Source DSL programs

Constraints

Design goals

We want a system that has good

• Efficiency (speed of compilation)

• Effectiveness (solvability of formulas)

• Usability (programming experience)

9

Outline

• The representation of symbolic values
How good are the formulas created with a purely functional symbolic value?

• Empirical evaluation

• The programming interface
What is the programming experience with a purely functional symbolic value?

10

Outline

• The representation of symbolic values

• Empirical evaluation

• The programming interface

11

An example program

Symbolic values are in orangea = if c1 then [x1] else [x2,x3]
b = if c2 then [x4] else [x5,x6]
d = a ++ b
e = head d

12

Complex values, e.g., lists

Operations on lists

MEG (Mutually Exclusive Guards)

dMEG =

13

Problem 1:
mutual exclusiveness
duplicates conditions

7 new nodes created
a = if c1 then [x1] else [x2,x3]
b = if c2 then [x4] else [x5,x6]
d = a ++ b
e = head d

head can be applied to the branches

MEG is the key design for Rosette and
MultiSE (FSE’15) to support advanced
features easily

ORG (ORdered Guards)

Insight 1: guards can be ordered and implicitly mutually exclusive with smaller terms
14

If/else if/otherwise

Problem 1:
mutual exclusiveness
duplicates conditions

a = if c1 then [x1] else [x2,x3]
b = if c2 then [x4] else [x5,x6]
d = a ++ b
e = head d

dMEG =

dORG =

7 new nodes created

Sources of duplications in MEG vs. ORG

15

if c4 then 4 else if c3 then 3 else if c2 then 2 else 1

MEG ORG

Original

MEG: duplication
when making
guards disjoint

Reordered
ORG: duplication
caused by reordering

Merging two ORG containers
if cond then a else b

How to merge?

reorder to align values

merged result =

16

Merging two sorted ORG container

Problem 2: we need to reorder and create complex conditions every time we merge
Insight 2: we can keep ORG containers sorted, and reduce the need for reordering

Sortedness is a representation invariant => Further merging avoids reordering

17

Merging complex types in ORG

18

Problem 3: merging is inefficient when ORG containers are big
Insight 3: use hierarchical encoding to allow sub-containers to be treated atomically
when the values are complex

Direct generalization

Preserves worst-case linear-time in # of symbolic values in ORG (proven with Coq)

Hierarchical encoding

Outline

• The representation of symbolic values

• Empirical evaluation

• The programming interface

19

Empirical evaluation

RQ1: is Grisette more efficient than the state-of-the-art?
• evaluation time (symbolic compilation)

• solving time

RQ2: why do Grisette's constraints solve faster?

20

Evaluation settings

Four symbolic compilation systems:
• Grisette with ORG

• Grisette with functional MEG (i.e., assertions propagated, not in global state)

• Rosette 3 (pre-POPL’22)

• Rosette 4 (post-POPL’22)

Five Rosette-based tools (six benchmarks) ported to Grisette:
• Ferrite (ASPLOS’16): file system crash model verifier and sync call synthesizer

• IFCL (PLDI’14): information flow control verification and synthesizer

• Fluidics (ASPLOS’19): microfluidics manipulation program synthesizer

• Cosette (CIDR’17): SQL equivalence checker

• Bonsai (POPL’17) for DOT (scala) & LetPoly: type system soundness checker
21

RQ1: Grisette is more efficient than SOTA, in
both compilation and solving time

22

Compilation Solving

6.1x over Grisette (MEG)
13.0x over Rosette 3
14.1x over Rosette 4

2.4x over Grisette (MEG)
5.5x over Rosette 3
5.7x over Rosette 4

0.9x

RQ2: faster solving can be a result of smaller
terms

23

Cosette

Letpoly

Outline

• The representation of symbolic values

• Empirical evaluation

• The programming interface

24

A minimal synthesizer

Program space: synthesize a function \x -> x + c

Some example programs in the space: \x -> x + 1,
\x -> x + 2

Specification: I/O pair (2, 5)

Expect result: \x -> x + 3

25

A minimal synthesizer

data SymExpr -- Symbolic candidate program space
= SIntValue SymInteger
| SAdd (UnionM SymExpr) (UnionM SymExpr)
| SMul (UnionM SymExpr) (UnionM SymExpr)
deriving ...

interpret :: SProgram -> SymInteger
interpret (SIntValue c) = c
interpret (SAdd x y) = interpretU x + interpretU y
interpret (SMul x y) = interpretU x * interpretU y

interpretU :: UnionM Sprogram -> SymInteger
interpretU = onUnion interpret

Define DSL syntax

DSL interpreter.
Interprets simultaneously all
ASTs in the space.

UnionM is an ORG container representing a
symbolic set of expressions

onUnion lifts 'interpret' to ORGs of ASTs 26

A minimal synthesizer
programSpace :: SymInteger -> SymExpr
programSpace x = SAdd (return x) (return "c")

executableProgramSpace :: Integer -> SymInteger
executableProgramSpace = interpret . programSpace . toSym

quickExample :: IO ()
quickExample = do
let constraint = executableProgramSpace 2 ==~ 5
Right model <- solve solverConfig constraint

print $ evaluateSym False model (programSpace "x")
-- SMul {SIntValue x} {SIntValue 3}

let synthesizedProgram :: Integer -> Integer =
evaluateSymToCon model . executableProgramSpace

print $ synthesizedProgram 20 -- 60

Call the solver with I/O
pair (2,5)

Get concrete synthesized
program

Print the synthesized
program \x -> x + 3

27

Define the program space
\x -> x + c

Make the program space
executable

A symbolic integer variable to be solved

Discussion 1: Stateful programming with Grisette

28

Example:
StateT requires ~30 lines of code.

Want an imperative DSL? Write a StateT-based interpreter.
Free monad + combinators and functors for trampolines (~250 lines of code)
mtl transformers (mostly <30 lines of code each)

Want coroutines? Use trampolines or delimited continuations.

StateT state UnionM val

Monadic ORG container

UnionM operations are
generalized with type classes.

Discussion 2: Additional benefits

Static types:
• constrain the symbolic representation for performance tuning

• ex: improved Cosette performance for an additional 8.7x speedup

Purely functional:
• memoization (1.2 – 7.5x compilation speed up on 4 projects)

• parallelization seems also possible

See the paper for more details

29

Grisette: Symbolic Compilation as a Functional
Programming Library

https://github.com/lsrcz/grisette

https://hackage.haskell.org/package/grisette

Sirui Lu
Rastislav Bodík

Thanks!

30

https://github.com/lsrcz/grisette
https://hackage.haskell.org/package/grisette

	Slide 1: Grisette: Symbolic Compilation as a Functional Programming Library
	Slide 2: Symbolic compilation enables new tools
	Slide 3: Symbolic execution: path explosion but easy to solve
	Slide 4: Bounded model checking: compact but harder to solve
	Slide 5: Our contributions
	Slide 6: Reusable symbolic compilers
	Slide 7: Reusable symbolic compilers
	Slide 8: Reusable symbolic compiler as a library
	Slide 9: Design goals
	Slide 10: Outline
	Slide 11: Outline
	Slide 12: An example program
	Slide 13: MEG (Mutually Exclusive Guards)
	Slide 14: ORG (ORdered Guards)
	Slide 15: Sources of duplications in MEG vs. ORG
	Slide 16: Merging two ORG containers
	Slide 17: Merging two sorted ORG container
	Slide 18: Merging complex types in ORG
	Slide 19: Outline
	Slide 20: Empirical evaluation
	Slide 21: Evaluation settings
	Slide 22: RQ1: Grisette is more efficient than SOTA, in both compilation and solving time
	Slide 23: RQ2: faster solving can be a result of smaller terms
	Slide 24: Outline
	Slide 25: A minimal synthesizer
	Slide 26: A minimal synthesizer
	Slide 27: A minimal synthesizer
	Slide 28: Discussion 1: Stateful programming with Grisette
	Slide 29: Discussion 2: Additional benefits
	Slide 30: Grisette: Symbolic Compilation as a Functional Programming Library

