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The development of constraint solvers simplified automated reasoning about programs and shifted the

engineering burden to implementing symbolic compilation tools that translate programs into efficiently

solvable constraints. We describe Grisette, a reusable symbolic evaluation framework for implementing

domain-specific symbolic compilers. Grisette evaluates all execution paths and merges their states into

a normal form that avoids making guards mutually exclusive. This ordered-guards representation reduces

the constraint size 5-fold and the solving time more than 2-fold. Grisette is designed entirely as a library,

which sidesteps the complications of lifting the host language into the symbolic domain. Grisette is purely

functional, enabling memoization of symbolic compilation as well as monadic integration with host libraries.

Grisette is statically typed, which allows catching programming errors at compile time rather than delaying

their detection to the constraint solver. We implemented Grisette in Haskell and evaluated it on benchmarks

that stress both the symbolic evaluation and constraint solving.
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1 INTRODUCTION

The development of constraint solvers enabled a variety of advanced reasoning about programs
[DeMoura and Bjørner 2011; Dennis et al. 2006; Dolby et al. 2007; Jha et al. 2010]. Central to this effort
have been tools that translate the semantics of a program into constraints, including analyzers [Xie
and Aiken 2005], symbolic execution engines [Cadar et al. 2008a; Havelund and Pressburger 2000;
Sen et al. 2013], and symbolic compilers [Clarke et al. 2004; Solar-Lezama 2008; Solar-Lezama et al.
2006]. More recently, symbolic host languages allowed the implementation of DSLs that were
automatically translated to constraints, easing the engineering burden of implementing a symbolic
DSL compiler by reusing the host language symbolic engines [Porncharoenwase et al. 2022; Torlak
and Bodik 2014]. These host languages were also proved useful for general-purpose languages, as
they hosted interpreters for LLVM [Lattner and Adve 2004] and RISC-V [Asanović and Patterson
2014], enabling symbolic analysis of programs that compile to these targets [Nelson et al. 2019].

The effectiveness of symbolic host languages [Porncharoenwase et al. 2022; Solar-Lezama 2008;
Torlak and Bodik 2013, 2014] rests on the combination of three techniques:
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• Partial evaluation is used to evaluate away language constructs that the symbolic compiler is
not designed to translate to constraints, such as virtual function calls or complex data types.
This allows programmers to use advanced constructs as long as they are used on concrete
(i.e., non-symbolic) values [Sen et al. 2015; Torlak and Bodik 2014].

• All-path symbolic execution increases the efficiency by simultaneously translating multiple
program paths (or all paths up to a certain execution depth, as in bounded model check-
ing) [Nelson et al. 2019]. All-path symbolic execution is particularly important in program
synthesis, where the space of candidate programs is represented as a single program whose
branches correspond to alternative rules in the grammar of the candidate space [Solar-Lezama
2008; Solar-Lezama et al. 2006]. By translating all program paths to a single constraint system,
we can ask the solver for a solution that represents the synthesized program.

• State merging is an indispensable mitigation to the path explosion problem caused by all-path
symbolic execution [Baldoni et al. 2018; Godefroid 2007]. The specific challenge is how to
merge program states so that partial evaluation remains effective. Rosette [Torlak and Bodik
2013, 2014] and MultiSE [Sen et al. 2015] developed algorithms that reduce path explosion
while preserving concrete values in the program state; as a result, partial evaluation remains
as effective as if each path was evaluated individually.

This paper describes a symbolic compiler that satisfies all three properties and can be implemented
as a library. In contrast, existing systems that provide all three techniques are based on lifting a
language into the symbolic domain, typically by developing a custom compiler or modifying an
interpreter. Because it is challenging to translate arbitrary language constructs to constraints, these
systems either restrict the host language (CBMC [Clarke et al. 2004] and Sketch [Solar-Lezama
2008; Solar-Lezama et al. 2006]) or lift a subset of the host language (Rosette 3 [Torlak and Bodik
2013, 2014] and Rosette 4 [Porncharoenwase et al. 2022]). Lifting a host language can lead to
usability challenges and confusion, for example, because lifted semantics can subtly change the
original semantics [Torlak 2016]. Additionally, porting the designs to other languages is nontrivial
because they are influenced by the metaprogramming features available in the host language.
Compared to existing systems, our design, Grisette1, seeks to offer these benefits:

• Symbolic compiler as a library. As a library, Grisette does not change the semantics of
the language. Instead, the symbolic value is a plain data structure with typed combinators
provided to build DSLs that operate on symbolic values. This combinator design serves as
an implementation recipe that is language-independent and thus, hopefully, more portable.
In languages with type classes and monads, all benefits presented in this paper can be
obtained, including the construction of a symbolic compiler for a stateful language via the
StateT transformer (Section 4.2). In other languages, one can still reimplement Grisette’s
combinators, while adapting the interface with the languages’ native features. This paper
presents our design in Haskell, but we have also developed a prototype in Scala following
the same architecture.

• Purely functional design. Grisette’s symbolic value is a purely functional data structure,
which simplifies parallelization and memoization of symbolic compilation. In our experiments
with Bonsai [Chandra and Bodik 2017] ported to Grisette and a backtracking regex syn-
thesizer, memoization accelerated symbolic compilation by 1.6x–7.9x, and improved overall
performance by 1.2x–7.5x (see Section 5.5).

• Static types. Static types ensure that external libraries use symbolic values correctly by pre-
venting symbolic values from flowing to where concrete values are expected. This guarantee
is challenging to achieve in dynamically typed host languages, causing hard-to-diagnose

1https://github.com/lsrcz/grisette

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 16. Publication date: January 2023.

https://github.com/lsrcz/grisette


Grise�e: Symbolic Compilation as a Functional Programming Library 16:3

unexpected behaviors [Torlak 2022]. Additionally, Grisette users can extend the system with
symbolic variants of user-defined or library data types with type classes. We used type classes
to support some common data types, such as tuples, byte strings, and size-tagged vectors.
Another benefit provided by a static type system is performance debugging, which boils
down to ensuring that the program propagates concrete values to enable partial evaluation
(symbolic values may lead to path explosion, slower compilation, and solving) [Bornholt and
Torlak 2018]. By rejecting programs with symbolic values in concrete parameters, the type
system helps debug and tune symbolic evaluators. In Section 5.2, we show that type checking
helped identify performance bugs missed by a dynamic symbolic profiler.

Formulating a library with all properties and benefits requires us to solve the following challenges:

• Efficient state merging algorithm. Designing a merging algorithm that is computationally
efficient and generates small formulas is nontrivial because slower algorithms can afford to
perform more formula optimizations. The challenge is even harder in the functional setting,
where the error state is propagated with the normal return values rather than stored in a
separate global store. In Grisette, we designed a new representation, called Ordered Guards
(ORG), as well as a merging algorithm that runs in $ (=) time as opposed to the naive $ (=2)

time, and generates much smaller formulas than the previous algorithms. These formulas are
also easier to solve. In Section 5.3, we show that on average our algorithm generates about
91% smaller formulas than Rosette on the benchmarks and has about 10.1x overall speedup.
This algorithm also gives us assertion optimization nearly for free.

• Efficient handling of multiple error types in a functional setting. Rosette 3 generates highly
compact formulas thanks to an optimization we call assertion optimization (Section 2.2). It
relies on two assumptions: (1) assertions are the only kind of program exit (assumptions
are not supported), and (2) there exists a global state for tracking assertions. As Rosette 4
extended its support to assertions and assumptions, it gave up part of the assertion opti-
mization even when only assertions were present in the code, generating formulas larger
than Rosette 3. Our system generalizes assertions and assumptions to arbitrary error types,
using functional programming infrastructures such as Either. Importantly, we preserve the
Rosette 3 optimization whenever only one error type is present. This requires us to carefully
design the structure of the functional symbolic state (Section 3.5).

The rest of the paper is organized as follows: we first overview our algorithm and the user-
friendly, highly configurable interface of Grisette in Section 2. We then describe the algorithm
in detail in Section 3 and discuss the interface design in Section 4. In Section 5, we evaluate
Grisette on verification and synthesis tools ported from Rosette [Porncharoenwase et al. 2022]
and G2Q [Hallahan et al. 2019a] as benchmarks. Finally, we discuss some related work in Section 6.

2 OVERVIEW

This section outlines the key contributions of Grisette. We first describe the Ordered Guards
(ORG) representation of symbolic values. Next, we show how ORG facilitates purely functional, yet
efficient, propagation of the symbolic evaluator state, including assertions and assumptions. Finally,
we show how symbolic evaluation with ORG is exposed as a library for verification and synthesis.

2.1 Symbolic Union with the Ordered Guards Representation

Traditional symbolic evaluation executes program paths separately [King 1976]. The resulting path
explosion can be alleviated by merging the symbolic states of the program branches into a single
symbolic state [Clarke et al. 2004]. Alternatively, states can be partially merged using a symbolic

union, which is a set of symbolic states guarded by path conditions [Sen et al. 2015; Torlak and
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Bodik 2014]. Unions are particularly useful for preserving and evaluating away partially concrete
values.

Unions are typically represented as a set of values guarded by mutually exclusive path condi-
tions [Sen et al. 2015; Torlak and Bodik 2014]. We call this particular union representationMutually

Exclusive Guards (MEG). The middle column of Fig. 1 symbolically evaluates a program using MEG
unions. We start by knowing the symbolic value of x, which is a union with three members: x is [a]
when cond1 is true; [b,c] when ¬cond1 ∧ cond2 is true; and similarly for the third member. Next,
we evaluate the term y = head x on the symbolic value of x. The term head x is evaluated three
times: on [a], [b,c], and [a,c,d], once for each member of the union. Since each member was a
concrete list (albeit with symbolic elements), the evaluation of head was done entirely concretely.

Merging of symbolic values happens whenMEG unions are normalized. In Fig. 1, we conceptually
decompose normalization into two steps: grouping and merging. The former identifies groups of
mergeable values, while the latter replaces each group with a single value and merges the guards
in the group.2 The overhead of normalizing an MEG union is in ensuring that guards are mutually
exclusive. This grows some guards, underlined in Fig. 1. In turn, larger conditions can become
barriers to term optimizations. For example, the symbolic evaluator may not be able to afford
to determine that the path condition for a can be simplified from cond1 ∨ (¬cond1 ∧ ¬cond2) to
cond1∨¬cond2, as such reasoning generally requires expensive invocations of SMT solvers. Although
Hansen et al. [2009] proposed to simplify path conditions using heuristic DNF minimization tools
(e.g., Espresso [Rudell 1986]), they show that many conditions cannot be optimized. Domain
knowledge is needed to further simplify the results, which is not easily available in a general-
purpose symbolic evaluator. Therefore, it is desirable to grow terms less during normalization.

-- the program under symbolic execution

x = if cond1 then [a] else if cond2 then [b,c] else [a,c,d]

y = head x

Variable Mutually exclusive guards (MEG) Ordered guards (ORG)

x (merged)

{
[a] if cond1

[b,c] if ¬cond1 ∧ cond2

[a,c,d] if ¬cond1 ∧ ¬cond2

{
[a] if cond1

[b,c] else if cond2

[a,c,d] otherwise

y (symex)

{
a if cond1

b if ¬cond1 ∧ cond2

a if ¬cond1 ∧ ¬cond2

{
a if cond1

b else if cond2

a otherwise

y (norm.1)

{
a if cond1

a if ¬cond1 ∧ ¬cond2
b if ¬cond1 ∧ cond2

{
a if cond1

a else if ¬cond2
b otherwise

y (norm.2)

{
a if cond1∨(¬cond1 ∧ ¬cond2)
b if ¬cond1 ∧ cond2

{
a if cond1∨¬cond2
b otherwise

Fig. 1. Two union representations: mutually exclusive guards (MEG) versus ordered guards (ORG). We
underline subterms added to maintain the invariants of the respective representations. Same subterms only
increase the overall size for 1 and will only be underlined once. The execution for x merges three paths, and
the program is internally translated to mrgIf cond1 [a] (mrgIf cond2 [b,c] [a,c,d]). The execution
for y is split into three steps: per-case symbolic execution (symex), identification of mergeable values (norm.1),
which performs reordering in the ORG representation, and final merging of those values (norm.2).

2In this section we restrict ourselves to merging identical values. Different values can also be merged. For example, in

Fig. 1, if a and b are in solvable types (directly representable as SMT formulas), the result will be further merged to

(ite (cond1∨(¬cond1∧¬cond2)) a b) using ite operator. Refer to Section 3 for details on the merging of such values.
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This paper proposes a union representation that does not normalize guards into a mutually
exclusive form. Instead, the values are ordered in an if-elseif-...else structure, and a value will be
chosen only if all the previous guards hold. We call the representation ORG, for Ordered Guards.
For example, for the value of x shown in the third column of Fig. 1, the guards cond1 and cond2 are
allowed to hold simultaneously, and their ordering determines which alternative is selected.

Unfortunately, the ORG representation cannot entirely avoid growing guards. Although it does
not make guards mutually exclusive, it transforms guards when it reorders the alternative values,
which is needed to completely merge mergeable values. Reordering happens during the grouping
phase of normalization, and the transformation of guards involves the creation of new nodes. For
example, in row y (norm. 1) in Fig. 1, the cond2 guard grew to ¬cond2. In general, the further a value
needs to move during reordering, the more its guard needs to grow.
In summary, MEG grows guards to make them mutually exclusive, while ORG grows guards

when it reorders alternative values. Our approach to making ORG efficient is to reduce the need to
reorder values by keeping them sorted in the same way in all unions. This allows us to merge two
ORG unions using a mergesort-style merge procedure without having to perform any reordering.
This merging then produces an ORG union that is normalized and sorted. It can be done in linear
time and usually generates compact conditions.
The ORG union and the merging process are illustrated in Fig. 2. Fig. 2a shows a valid ORG

union; Fig. 2b shows an invalid union where two mergeable values (two 1’s) have not been merged.
Fig. 2c shows another invalid example, where the values are not sorted. Since merging is always
performed at conditional join points using the mrgIf function of the symbolic evaluator, we merge
ORG unions in this function. Fig. 2d shows the mergesort-like merging of two ORG unions.




1 if cond1

2 else if cond2

3 otherwise

(a) Valid




1 if cond1

1 else if cond2

3 otherwise

(b) Invalid, contains mergeable values




1 if cond1

3 else if cond2

2 otherwise

(c) Invalid, not sorted

mrgIf


c,




1 if c1

2 else if c2

4 otherwise
,




1 if c3

3 else if c4

4 otherwise


=




1 if ite(c, c1, c3)

2 else if c ∧ c2

3 else if ¬c ∧ c4

4 otherwise

(d) Mergesort-style merge

Fig. 2. ORG union and the merge procedure

Grisette is not the first symbolic evaluator to represent unions in an ordered manner. Some
existing symbolic execution tools have represented their union-like values with nested ite operators,
effectively using ordered semantics underlying our ORG representation. However, these tools did not
attempt to normalize unions by merging all identical values. For example, Veritesting [Avgerinos
et al. 2014], and Java Ranger [Sharma et al. 2020] only perform generic optimizations to the nested
ite structure, such as when one branch is unreachable. The tool by Sinha [2008] employs a set
of rewriting rules to merge some mergeable values, but the rules may fail to merge some pairs of
values. For example, when evaluating If a 3 x where x is If b 1 (If c 2 3), the rewriting rules
will not identify the two 3’s, leaving the result as If a 3 (If b 1 (If c 2 3)). In this example,
the optimization rules fail because they only search for mergeable terms that are in adjacent ite
nodes. We achieve complete merging by defining a normal form, which by definition merges all
values, as well as the algorithms that can merge two unions while preserving the normalized form.
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ORG also admits further optimizations. So far, we have described ORG as a flat list of values.
When the list is long, it is beneficial to partition it and merge (some or all) partitions into nested
ORG values. This hierarchical ORG representation is particularly useful for complex data types,
such as tuples, which otherwise tend to yield long lists. In the following example, E8 are values,
while C8 are ORG containers; C1 and C

′
1 are merged into a nested ORG by a recursive call to mrgIf.

We describe the hierarchical merging algorithm for nested ORG containers in Section 3.2 and
Section 3.3. The key idea is to create the hierarchical ORG value with a merging strategy (B in
the example), which is a function that informally partitions the list and orders the partitions. The
function also generates sub-strategies or merging functions to control how to merge the ORG
trees and values in the next level. In the example, the sub-strategy B′ controls the merging of the
sub-trees C1 and C

′
1, and the merging function 5 is used to merge the mergeable values E4 and E

′
4.

mrgIf


B, 2,

{
C1 if 21
E3 else if 22
E4 otherwise

,




C ′1 if 23
C ′2 else if 24
E ′4 otherwise


=




mrgIf(B′, 2, C1, C
′
1) if ite(2, 21, 23)

C ′2 else if 2 ∧ 22
E3 else if ¬2 ∧ 24
5 (2, E4, E

′
4) otherwise

This nested representation generates smaller formulas because values in a sub-tree share the sub-
tree guard; it can also be merged faster. Our empirical study shows that our system generates 91.2%
smaller formulas than Rosette 4 [Porncharoenwase et al. 2022] and 79.2% smaller formulas than
our system implemented with the MEG representation (see Section 5). These improvements stem
from both the ordered nature of our representation and its hierarchical structure.

2.2 Propagating Purely Functional Symbolic Evaluator States

Symbolic evaluation tools are used to reason about programs, and we need to specify the desired
behaviors, usually with assumptions and assertions. The verification condition (VC) generation pro-
cedure [King 1969] then translates the behaviors into constraints. This subsection analyzes several
existing VC optimizations and shows that our merging algorithm can achieve these optimizations
without dedicated algorithms — it suffices to suitably order the values in the ORG representation.

Rosette 3 (a legacy version of Rosette) [Torlak and Bodik 2014] separates the assertion
conditions from non-error program states (Rosette 3 does not support assumptions). The following
Rosette code is written in a Haskell-like syntax extended with sequential imperative constructs.

assert c; x = if c1 then (assert c2; a) else (assert c3; b)

-- x: ite(c1, a, b) for solvable types, or {a if c1, b if not c1} for unsolvable types.

-- assertion store: c∧(¬c1∨c2)∧(c1∨c3).

To evaluate the program, Rosette 3 splits paths under c1 and evaluates each branch separately.
On both paths, the path condition ?2 is carried as a symbolic evaluator state. When an assert 2

statement is executed, condition ¬?2 ∨ 2 (i.e. ?2 ⇒ 2) would be added to a global assertion store,
which is another symbolic evaluator state. The condition indicates that the program will not violate
the current assertion if the current path is not executed or the asserted condition is true. All
conditions will be connected using conjunctions to ensure that no assertion will be violated. The
algorithm has two good properties. The first is that assert statements would not impact subsequent
execution because xwill not depend on c2 or c3. The second is that the clauses produced by different
assert statements do not depend on each other, thus the assertions produce non-interfering clauses
compactly in the CNF formula. We refer to these properties as assertion optimizations.
With more advanced VC generation, assumptions can be used to limit the search space, and if

some assumption is violated, the verification would simply pass. Rosette 4 received assumption
support with its recent update [Porncharoenwase et al. 2022]. Because assertions and assumptions
interact, it may be necessary to duplicate some conditions when they are interleaved. However,
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Rosette 4 does not preserve assertion optimization even if the program is assumption-free, and
this issue has already been discussed by the authors. As a simple example, the following shows the
constraint generated by Rosette 4 for the previous Rosette 3 code, which is much more complex.

c∧(¬c1∨(c∧(c2∨(¬(¬c∨c1)))))∧(c1∨(c∧(c3∨(¬(¬c∨¬c1)))))

Bounded model checking tools use different algorithms and usually generate better formulas in
all-path scenarios. To compile a program to constraints, CBMC [Clarke et al. 2004] transforms the
program into SSA form. The following code shows an example, and the second line is the SSA form.

assume c1; x = if c2 then (assert c3; a) else (assume c4; b); assert (g x)

assume c1; assert (c2⇒c3); x1 = a; assume (¬c2⇒c4); x2 = b; x = ite c2 x1 x2; assert (g x)

Unlike concrete executions, here the if statement executes both branches, and the results aremerged
with ite. Path conditions are added to all assertions and assumptions; for example, assert c3would
become assert (c2 ⇒ c3). The program is now flattened, and the statements can be processed
one by one. For each assert statement, the tool collects all previous assumptions as preconditions.
The assumptions are then eliminated, and the assertions will be independent statements.

assert(c1⇒(c2⇒c3)); assert((c1∧(¬c2⇒c4))⇒g(ite(c2, a, b)))

It is easy to see that this encoding would have the assertion optimization properties when only
assertions are present, but it would duplicate the assumptions, e.g. c1 in the above code.

Based on our observations of previous work and our needs, we have the following design goals.

(1) We want a purely functional VC generation so that we can benefit from functional program-
ming techniques, e.g., memoization, and functional handling of errors.

(2) We want to extend VC generation to support richer error models in a simple and unified way,
including assertions, assumptions, and user-defined errors, without dedicated algorithms.

(3) We want the errors to be propagated as efficiently as if they were kept in a global state with
a specialized algorithm. We should preserve assertion optimization when only assertions are
present, and generate compact formulas when different errors interleave.

Our approach models assertions and assumptions as abnormal terminations. Instead of a central-
ized verification condition store, we use the basic error handling technique in functional program-
ming to track verification conditions. We use Either to model executions that can terminate with
an error, and optimizations can be achieved with an appropriate hierarchical ordering for merging.
Execution of sequential programs can be achieved by tree substitution on the Right values in

ORG containers. Unlike previous tools, our system does not need to hardcode the semantics of
assert and assume or build them into the core semantics with a dedicated optimization algorithm.
They can be defined by the user as simple data types, and we can implement the Rosette 3 example:

data Error = Assert | Assume

assume c = if ¬c then Left Assume else Right ()

assert c = if ¬c then Left Assert else Right ()

assert c; x = if c1 then (assert c2; Right a) else (assert c3; Right b)

With tree substitution semantics, the code is translated into the following mrgIf representation.

mrgIf (¬c) (Left Assert) (mrgIf c1 (mrgIf (¬c2) (Left Assert) (Right a))

(mrgIf (¬c3) (Left Assert) (Right b)))

It will be normalized to the compact representation with assertion optimization. If we rewrite ite

with conjunctions and disjunctions, we will get the same (negated) assertion store as Rosette 3.

If (¬c∨ite(c1, ¬c2, ¬c3)) (Left Assert) (Right (ite(c1, a, b)))

With configurable merging rules, the VC generation behavior can be configured when there
are assumptions. One simple way is to order Left Assert before Left Assume. Then we can get the
following result for the example program we used for CBMC, in which the guard for Left Assert

is a simplified and negated version of the encoding by CBMC.
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If (c1∧((c2∨¬c3)∧((c2∨c4)∧¬g(ite(c2, a, b))))) (Left Assert)

(If (¬(c1∧(c2∨c4))) (Left Assume) (Right ()))

Another way to generate VCs is to use the tree structure of If, and normalize the container to
the following form. This can be achieved with our hierarchical merging algorithm and will be our
default VC generation procedure. We will discuss this in Section 3.5.

If anyErrorHappens (If theErrorIsAssert (Left Assert) (Left Assume)) variousRightValues

Our empirical study shows that the two encodings may work well in different scenarios and that
neither is superior. Since our system is configurable, we only show two possible efficient ways to
handle the VC, and the user may handle the VC in a more efficient way with domain knowledge.
Another important advantage of our system is that it is not limited to the common asser-

tion/assumption model and supports arbitrary error types. The user will not have to encode
correctness criteria as assertions and assumptions. They can define their errors with domain knowl-
edge and program with familiar FP constructs to handle errors. The decoupling of the assertion and
assumption constructs from the program is useful for building more versatile tools, as the errors
do not have predefined semantics and can be interpreted in different ways in different scenarios.
The user will also be able to do things difficult before. For example, in previous systems, when
an assertion is made, there is no way to transform it into an assumption or handle it with error
handlers. However, it would be easy to do so in our system by substituting the Left values.

2.3 Symbolic Compilation as a Library

Grisette is a tool to build other solver-aided tools, and usability is one of the most important
design goals.Grisette provides a configurable versatile symbolic evaluator, which can be combined
with domain-specific semantics to build high-quality solver-aided tools for various tasks. Previous
versatile symbolic evaluation systems lifted a subset of the host language to the symbolic domain
(e.g., Rosette) or built a new language with symbolic features (e.g. Sketch [Solar-Lezama et al.
2006]). For example, Rosette lifts a subset of Racket, allowing some syntax and library functions to
work on symbolic values. Our tool Grisette is not a lifted language. Instead, it is a statically-typed
monadic library and integrates nicely with the existing host language ecosystems. We believe that
this can make the tool more accessible. In this section, we will demonstrate several advantages of it.

2.3.1 Integration with the Host Language Ecosystem through Static Types: Safety and Efficiency. It
is desirable to create symbolic versions of host language data structures, such as hash tables that
contain concrete keys and symbolic values. In dynamically typed systems such as Rosette and
MultiSE, such data structures are not automatically available, although a dynamically typed hash
table should in principle accept any type of value, including symbolic values. This can result in
unmerged values and unexpected behavior in Rosette:

(if a (make-hash (list (cons 1 b))) (make-hash (list (cons 1 c))))

; (union [a #hash((1 . b))] [(! a) #hash((1 . c))]) better: #hash((1 . (ite a b c)))

(equal? (make-hash (list (cons 1 b))) (make-hash (list (cons 1 c)))) ; #f expected: (= b c)

In the first line, the system does not know how to merge the two hash tables and would simply
keep them concrete in two MEG branches. In the second line, the system lacks knowledge on how
to compare the hash tables symbolically. To compare the two hash tables, it falls back to Racket’s
default equal?, which will find that b and c are different symbolic formulas and return false.
In Grisette, with the type class mechanism, we can allow restricted usage for hash tables. For

example, when keys are concrete and values are simply mergeable (any two values of the type
can be merged, see Section 3.2), we can implement the symbolic equality relation correctly and let
the system merge the hash tables with the same key set. When the user tries to use unsupported
operations, no surprising behavior would occur, and the program simply does not type check.
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instance ConcreteType K => SEq (HashMap K V) where ...

instance (ConcreteType K, SimpleMergeable V) => Mergeable (HashMap K V) where ...

Being able to configure functionalities with types helps us integrate Grisette closely with host
language libraries, and we implemented bytestring [Stewart and Coutts 2021] and vector-sized

(size-tagged vectors) [Hermaszewski 2021] support without modifying Grisette itself.
Using types to configure state merging is also useful for performance tuning and avoiding

missed concretization bugs [Bornholt and Torlak 2018; Kuznetsov et al. 2012]. For example, we can
have two state representations with similar semantics: ORG container of concrete integers, e.g.
If a 1 (If b 2 3), or symbolic integer represented as SMT formulas, e.g. (ite a 1 (ite b 2 3)).
We can use them as indices to get elements from a list. With the first representation, we can
distribute among the three concrete branches and return no infeasible value. However, with the
second representation, the system has to compare it with all possible indices 0, 1, ... as there
is no general algorithm to efficiently extract all possible concrete values from an SMT formula.
This generates larger results with infeasible values where (ite a 1 (ite b 2 3)) equals 0. In
Grisette, the two representations have the types UnionM Integer and SymInteger, respectively.
The types constrain the desired representation, thus constraining that no performance problem
due to undesired representations can occur. We use this feature to implement a backtracking regex
synthesizer efficiently, as we need to backtrack and restart matching from concrete indices, and in
Section 5.2, we will show that with static types, we successfully found and fixed more performance
bugs that cannot be easily found with symbolic profiling tools [Bornholt and Torlak 2018].

2.3.2 Monadic Design with Reduced Implementation Work and Increased Generality. The ORG
symbolic union, Union, is at the heart of Grisette. Its definition is as straightforward as an if-
then-else tree. The SymBool here is a symbolic Boolean value for path conditions, which will be
elaborated in Section 3.1. Similar to tree monads, Union is a monad with tree substitutions, and
sequential programs can be modeled with sequential applications of binds or the do syntax sugar.

data Union a = Single a | If SymBool (Union a) (Union a)

Due to the constrained monad problem [Sculthorpe et al. 2013], the bind operation for Union
cannot perform state merging and normalization. We introduce another monad UnionM, which
caches the information required for merging, to reduce the boilerplate for manually merging the
results. The following shows the Grisette code modeling the program shown in Section 2.1.
Here, mrgReturn is a wrapper for return, but also propagates the merging strategy provided by the
Mergeable instance to merge the result of the entire do block. This is further propagated when the
result is used, which helps to keep all intermediate values normalized and avoid path explosions.

do x <- mrgIf cond1 (return [a]) (mrgIf cond2 (return [b,c]) (return [a,c,d]))

mrgReturn (head x)

Usingmonads allowsmodeling variousmechanismswithmonad transformers. The error handling
mechanism can be supported without boilerplate with ExceptT. Stateful programming can also
be adapted to Grisette, using StateT to manage global states. Our approach is more flexible and
general than previous systems. For example, in previous systems, it is hard to symbolically evaluate
programs with unstructured control flows [Torlak 2021], while in Grisette, this can be supported
easily: we support delimited continuations with reset/shift [Danvy and Filinski 1990] through
ContT, and we used it in our backtracking regex synthesizer to implement coroutines. We can even
memoize the coroutine computations, which will be evaluated in Section 5.5. Our system is also
compatible with some effect systems, including the effect system with the fusion techniques [Wu
and Schrijvers 2015]. We have implemented support for fused-effects [Wu et al. 2022]. This allows
the mechanisms to be implemented more flexibly. Other effect systems are inherently unfriendly to
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state merging (not just for our system), as they deeply embed intermediate results [Kiselyov et al.
2013]. We can only merge the computation, which cannot reduce as many paths as merging values.
Several monadic or effect stacks have been proposed for various mechanisms in symbolic

execution [Darais et al. 2017; Mensing et al. 2019; Wei et al. 2020]. With the configurable nature of
Grisette, it is possible to adapt them to use our system to enhance them with state merging.

3 ORG: A REPRESENTATION OF SYMBOLIC VALUES WITH ORDERED GUARDS

In this section, we will give our representation of symbolic values, including the ORG-based union
data structure. We will introduce the representation invariant (hierarchical sortedness) and merging
algorithm for unions progressively for more advanced types in the union. We will then introduce
how errors can be handled easily and flexibly with the union data structure.

3.1 Symbolic Values Representation

We begin our design with the representation of symbolic values. In our system, we distinguish
between solvable types and unsolvable types. A solvable type can be represented as a symbolic
formula and is directly supported by the underlying SMT solvers. This includes symbolic Booleans,
symbolic integers (unbounded mathematical integers), etc. For example, symbolic Booleans has the
type SymBool in our system. A SymBool can be a concrete Boolean value, e.g. true, or a symbolic
constant (placeholders for concrete constants), e.g. a, or a complex symbolic formula with symbolic
operations, e.g., (&& a b). To better fit Haskell’s ecosystem, we have extended the operations, and
these extended operations can be lowered to SMT operations. The solvers can then be used to
determine the concrete values for the symbolic constants to satisfy the formula.

For unsolvable types from the host language, e.g., lists ([SymBool]), or concrete integers (Integer),
we introduce Union to capture the ORG semantics. Here a is a type variable for the contained type,
and we can use a container with the type Union [SymBool] for the lists of symbolic Booleans.

data Union a = Single a | If SymBool (Union a) (Union a)

In the following example, the Union value has the same semantics as the ORG representation.
We will sometimes omit the Single constructors for readability.

If cond1 [a]

(If cond2 [b,c]

[a,c,d])

versus



[a] if cond1

[b,c] elseif cond2

[a,c,d] otherwise

Note that the left branch in our If definition is a Union a rather than just an a, allowing us to
have sub-trees there, and allowing for nested ORG representations. In the following example, E∗
are values, and C∗ are sub-trees. When 21 is true, the result will be further determined by 211 and 212.




C1 if 21
E2 elseif 22
E3 otherwise

where C1 =




E11 if 211
E12 elseif 212
E13 otherwise

In the next subsection, we will focus on our representation invariant which states that the values
and sub-trees should be sorted hierarchically. As the construction for the conditions will be trivial
and will be shown in Section 3.3, we will only focus on the values in the invariants in Section 3.2.
We introduce a more compact representation for the ORG containers when the conditions are not
relevant: the previous example would be represented as [C1, E2, E3], where C1 would be [E11, E12, E13].
For the container, we will refer to the set {E11, E12, E13, E2, E3} as the set of the leaf values.

3.2 Representation Invariant for Union

For complete merging with ORG semantics, we describe a novel algorithm with Union containers.
Our goal is to create a modular abstraction working efficiently for both solvable and unsolvable
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types, particularly algebraic data types. Our algorithm normalizes the containers to maintain a
representation invariant such that the values are sorted hierarchically, so that we can merge them
easily by hierarchically performing a mergesort-style merge. The intuition for the invariant will be
demonstrated in several sub-subsections, progressively from simple types to complex types. Then
in Section 3.3, we will formalize our algorithm and prove some properties of it.

As an overview, Table 1 shows typical representations of Union. The solvable values will always
be merged into a single value, and concrete primitives will be maintained in sorted non-nested
ORG containers. Then we will use product types to show the intuition of a general framework for
all kinds of types, which maintains the values in a hierarchically sorted nested ORG container.

Table 1. Typical representation for a Union with invariant

Category Typical type Typical representation with invariant

Solvable type SymBool E

Concrete prim Int [E1, E2, · · · , E=] where E1 < E2 < · · · < E=
Product type (Int, Int, SymBool) [C1, C2, · · · , C=] where C8 = [E81, E82, · · · , E8<],such that

(1) all values in C8 has the same first tuple element 58
and 51 < 52 < · · · < 5= , (2) in each C8 , let B8 9 be the
second element of E8 9 , then B81 < B82 < · · · < B8<

Sum type Either SymBool Int [Left 1, CA86ℎC ] where CA86ℎC = [Right E1, Right E2, · · · ,

Right E=] such that E1 < E2 < · · · < E=

3.2.1 Merging Solvables in Union. As a strongly typed system, we will not automatically unwrap
the values with solvable types in a Union and merge them directly with SMT ite operator. However,
merging them in a Union is simple, as we can always merge them into a single value with ite.

mrgIf a (Single b) (Single c) ==> Single (ite a b c)

This can be generalized to any type a that can be merged with a merging function m :: SymBool

-> a -> a -> a, which can be defined by the user for other data types.

3.2.2 Merging Concrete Integers. Our system supports both symbolic and concrete integers (the
integer type in the host language), and they have different types. This distinction is useful for
controlling concretization and allowing for more optimizations based on use cases [Bornholt and
Torlak 2018]. For example, in a machine code verifier [Nelson et al. 2019], we may want the program
counter to be concrete to prune infeasible paths. The user can then use SymInteger for symbolic
integers, or use Union Integer to represent a set of concrete integers under some path conditions.
The merging for SymInteger is trivial with ite, but the only way to merge concrete integers

is to find and merge identical numbers. A naive approach does not scale if it has to make $ (=2)

comparisons for a program with = possible execution paths. Sorting the integers before looking for
identical ones is a better approach, which reduces the time complexity to the sorting complexity
$ (= log=). However, sorting values in ORG containers involves expensive reorderings of values
and is not efficient in term size. Our algorithm, instead, maintains the invariant that all Union
operands for a conditional join are already sorted, so the merging and invariant maintaining can be
done easily with a mergesort-style merge if state merging is performed at every conditional join.

Definition 3.1 (Sorted Invariant). A union value D of type Union 0 meets Sorted Invariant if there
exists a total order ' on 0, and D is organized as [E1, E2, · · · , E=] where E1 < E2 < · · · < E= .

We can then merge sorted Unions with a mergesort-style merge.
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mrgIf a (If c1 1 (If c2 2 4)) -- Single constructor omitted

(If c3 2 (If c4 3 4))

==> If (&& a c1) 1 (If (ite a c2 c3) 2 (If (&& (not a) c4) 3 4))

3.2.3 Handling Product Types. After discussing the merging procedures for simple types, we now
introduce our merging framework by analyzing the merging of product types.

Let’s analyze a product type (Integer, Integer, SymBool)with both concrete and solvable fields.
One simple generalization of our previous analysis on solvable and concrete primitive types is that
we can sort the values lexicographically with the concrete fields, and for those values with the
same concrete fields, we can then merge their solvable fields with some merging function. See the
following code as an example. The branches are non-nested ORG containers, and they are already
sorted by the first and second fields. In the result, as (1, 1, ∗) exists in both branches, they would be
merged together by using the merging function ite to merge the SymBool fields.

mrgIf c (If c1 (1,1,u) (If c2 (1,2,v) (If c3 (2,3,w) (2,4,x)))) -- Single constructor omitted

(If c4 (1,1,y) (9,1,z))

==> If (ite c c1 c4) (1,1,(ite c u y)) -- new term here twice

(If (&& c c2) (1,2,v) -- new term here

(If (&& c c3) (2,3,w) -- new term here

(If c (2,4,x)

(9,1,z))))

However, this approach still needs improvement for two reasons: (1) inefficient symbolic eval-
uation for very long lists, and (2) generation of larger and redundant terms. For the inefficiency
aspect, to merge the two linked lists, when there are only a few pairs of mergeable values, we
may need to skip many values one-by-one, e.g., Single (2,3,w) and Single (2,4,x). This would
be inefficient when the Unions are large. For the redundant terms aspect, although we skipped the
values, we need to augment the path conditions for them, which increases the overall term size.

Our approach hierarchically merges values using the tree structure of Union, rather than only
the degenerate linked list structure. It first sorts the values with the first fields and then gathers all
the values with the same first field in some sub-trees. For each sub-tree, the values will then be
sorted using the second fields, and then the values can be merged by merging the symbolic fields.
The advantage of this hierarchical encoding is that the lists would be shorter at each level, and
we do not have to go into sub-trees when unnecessary. In the following example, we can skip the
whole sub-tree for (2, ∗, ∗) in one step and only augment the path condition once for the whole
tree. Such performance differences will be significant when the sizes of the unions are large.

mrgIf c (If c1 (If c2 (1,1,u) (1,2,v))

(If c3 (2,3,w) (2,4,x))) -- no need to look into

(If c4 (1,1,y) (9,1,z))

==> If (ite c c1 c4) (If (|| c2 (not c)) (1,1,ite c u y) (1,2,v)) -- (1,*,*)

(If c (If c3 (2,3,w) (2,4,x)) -- (2,*,*)

(9,1,z)) -- (9,*,*)

Our algorithm will be established with several definitions. We will first establish the invariant
to maintain by the merging algorithm, and the algorithm would be formalized later. First, we will
define the concept of merging strategies, which describes how a set of values can be merged.

Definition 3.2 (Merging strategy). A merging strategy <B :: MergingStrategy 0 is either

(1) a simple strategy with a merging function<5 :: SymBool -> 0 -> 0 -> 0, or
(2) a sorted strategy with a totally ordered index type 8 , an indexing function 83G :: 0 -> 8, and

a sub-strategy function BD1 :: 8 -> MergingStrategy 0.

data MergingStrategy a where

SimpleStrategy :: (SymBool -> a -> a -> a) -> MergingStrategy a

SortedStrategy :: (Ord idx) => (a -> idx) -> (idx -> MergingStrategy a) -> MergingStrategy a
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The sorted strategy partitions values into subsets with the indexing function, and orders the sub-
sets with indices. For each subset, we have the sub-strategy for its index. After several partitioning,
some sets will have simple strategies, and the values can then be merged with the merging function.
In an ORG container merged with some sorted strategy, each sub-tree corresponds to a subset for
some index. And the sub-trees are further merged with the sub-strategies for their indices.
For (Integer, Integer, SymBool), the merging strategy can be defined as follows. At the top

level, the index is the first field, and at the second level, we sort the tuples with the second field.
Then we merge the tuples with the same concrete fields by merging the symbolic fields with ite.

SortedStrategy (\(x,_,_) -> x) (\_ -> SortedStrategy (\(_,x,_) -> x) (\_ ->

SimpleStrategy (\c (a,b,t) (_,_,f) -> (a,b,ite c t f))))

Note that the functions in a merging strategy can be partial and only defined on some subsets
of the values of type 0. For a merging strategy to properly perform partitioning and merging, we
need some laws. We can easily verify that the merging invariant defined before meets these laws.

Definition 3.3 (Proper merging strategy). A merging strategy<B for the type 0 is a proper merging

strategy regarding a set ( ⊆ 0 if it have a finite depth and meets the closed law or the partition law

on the set ( . We use the predicate PM(<B, () for<B to be a proper merging strategy regarding ( .

Being proper on some set means that it can be used to merge values in that set. The closed law
and partition law ensure that we can partition the values using sorted strategies with partially

defined indexing and sub-strategy functions, and if the values are eventually partitioned to small
enough sets with simple strategies, the values can then be safely merged with the merging function.
The finite depth ensures that partitioning can be done in finite steps and the algorithm terminates.

Definition 3.4 (Closed law). A simple strategy SimpleStrategy <5 for the type 0 meets the closed
law on some set ( ⊆ 0 if ( is closed under the operation<5 1 with any 1 :: SymBool, i.e., SymBool×
( × ( ⊆ dom(<5 ) ∧<5 (SymBool × ( × () ⊆ ( .

Definition 3.5 (Partition law). A sorted strategy SortedStrategy 83G BD1 for the type 0 meets the
partition law on some set ( ⊆ 0 if,

(1) it maps every value in ( to a sub-strategy, i.e. ( ⊆ dom(83G) ∧ 83G (() ⊆ dom(BD1), and
(2) the sub-strategy for each index should be able to merge the values with that index, i.e.,

∀8 ∈ dom(BD1), PM(BD1 (8), {E | E ∈ ( ∧ 83G (E) = 8}).

Definition 3.6 (Strategy depth). We define the depth of a merging strategy as a natural number:

(1) simple strategies have the depth 0, and
(2) the depth for a sorted strategy should be the maximum of the depth of its sub-strategies in

the set {B | ∃ E, B = BD1 (E)} plus one.

We use the function msdepth(<B) to denote the depth of a merging strategy<B .

Note that the definition is only valid for the strategies without cyclic sub-strategy relation.
Otherwise, for example, when a strategy is a sub-strategy of itself, we define its depth as infinity.
Then we can define the hierarchical merging invariant for a union:

Definition 3.7 (Hierarchical Merging Invariant). A union value D of type Union 0 meets the
Hierarchical Merging Invariant regarding a subset ( ⊆ 0 and a merging strategy<B if D meets the
Hierarchical Simple Merging Invariant or the Hierarchical Sorted Merging Invariant regarding ( and
<B . We use the predicate HM(D,<B, () for D to meet the invariant regarding ( and<B .

Definition 3.8 (Hierarchical Simple Merging Invariant). A union valueD = Single E of type Union 0
meets the Hierarchical Simple Merging Invariant regarding a subset ( ⊆ 0 and a simple merging
strategy<B if PM(<B, () ∧ E ∈ ( .
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Definition 3.9 (Hierarchical Sorted Merging Invariant). A union value D of type Union 0 meets
the Hierarchical Sorted Merging Invariant regarding a subset ( ⊆ 0 and a sorted merging strategy
<B = SortedStrategy 83G BD1 if PM(<B, () and D is organized as [D1, D2, · · · , D=] such that

(1) all the leaf values of D are in ( , and
(2) for each D: , there exists an index 8: such that for all leaf value ;: 9 in D: , 83G (;: 9 ) = 8: , and
(3) 81 < 82 < · · · < 8= , and
(4) sub-trees meet the invariant with sub-strategies, i.e., HM(D: , BD1 (8: ), {E : B | 83G (E) = 8: }).

We can verify that the unions shown in the mrgIf example before meets the invariant with
the merging strategy defined for (Integer, Integer, SymBool). We will call the type (Integer,

Integer, SymBool) a mergeable type, and the merging strategy here is its root merging strategy.

Definition 3.10 (Mergeable type and root merging strategy). A mergeable type is a type with a
unique root merging strategy proper for all the values of the type. A type whose root merging
strategy is a simple merging strategy is a simply mergeable type.

class Mergeable a where

mergingStrategy :: MergingStrategy a

mrgIfWithStrategy :: MergingStrategy a -> SymBool -> Union a -> Union a -> Union a

mrgIf :: (Mergeable a) => SymBool -> Union a -> Union a -> Union a

class SimpleMergeable a where

mrgIte :: SymBool -> a -> a -> a

It is easy to see that we can formulate the merging rules with our framework for primitive types
discussed before: for SymInteger, the root merging strategy would be SimpleStrategy ite, and for
Integer, the root merging strategy would be SortedStrategy id (SimpleStrategy (\_ t _ -> t)).

mrgIf is implemented by delegating to mrgIfWithStrategywith some necessary tricks for usability
and efficiency, and we will discuss how to implement these functions later. mrgIf is analogous to if

statement with control flow semantics. It should be called on Union values. mrgIte is analogous to
SMT’s ite. It is a ternary operator and should be called on simply mergeable types.
For a union wrapping a mergeable type, after merging, it should be a merged union.

Definition 3.11 (Merged union). Let 0 be a mergeable type and<B be its root merging strategy, a
union value D of the type Union 0 is merged if �" (D,<B, 0).

3.2.4 Handling Sum Types. Supporting sum types is simple with our framework. We can simply
order the values with the data constructor definition order and use it as the top-level sorting criterion.
Themerged invariant ensures that all values in each subtree have the same data constructor, allowing
us to merge them as product types. Here is an example of merged sum type values:

data T = A Int | B SymInt | C Int Int

If condA (If condA1 (A 1) (A 2))

(If condB (B (ite x y z))

(If condC1 (If condC11 (C 1 1) (C 1 2)) (C 2 1)))

3.2.5 Handling Arbitrary User-Defined Types. Handling algebraic data types is discussed before.
The general merging rules are built into the system via type-class derivation mechanisms. For
those complex user-defined non-algebraic data types, the user can implement their own merging
strategy as long as their type can be hierarchically partitioned into simply mergeable subsets.

3.3 The Semantics for the Merging Algorithm

This subsection gives details on the ORG merging algorithm. We do so by defining the function
mrgIfWithStrategy introduced in Definition 3.10. This function is defined with reduction rules for
the language of terms given below. Evaluating the function application mrgIfWithStrategy ms c t f
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is modeled as reducing the term MrgIf N ms c t f. The result of the reduction is a Value term,
which wraps the normalized (i.e., merged) result. The term MrgIf N represents non-degenerate
MrgIf while MrgIf SS together with three other terms stand for intermediate terms.

data DegenerateVariant = N | SS | SI | IS | II

data Term a = Value (MergingStrategy a) (Union a)

| MrgIf DegenerateVariant (MergingStrategy a) SymBool (Union a) (Union a)

In Fig. 3, we present the big-step semantics of the language; the ‘evaluate to’ relation is de-
noted ⇓.MrgIf* rules are the top-level dispatching rules for MrgIf N terms. RuleMrgIfTrue and
Rule MrgIfFalse show that when the condition is concrete, merging two symbolic values simply
yields the true or false branch. When the condition is not concrete, merging depends on the merging
strategy and the shape of the union values. Recall that we have two types of merging strategies:
simple and sorted, and the union values can be constructed using Single or If. For simple strategies,
the only invariant-preserving union values are the Single values, and RuleMrgIfSimple merges
the values using the merging function specified by the strategy. For sorted strategies, we delegate to
the other rules shown in Fig. 3. The other rules are organized as four groups (IS* rules are omitted
because they are analogous to SI* rules). Each group has its own assumptions and corresponds to
a degenerate variant of MrgIf. Evaluating a well-formed term (Definition 3.12) will always satisfy
these assumptions and thus the evaluation will not get stuck (Lemma 3.14).
We briefly describe the rules in the SI* group; other rules work analogously. S and I indicate

assumptions on the true and false branches, respectively. S means that all leaf values in the
branch have the same index, and I means that the branch is constructed with If. In the group,
there are four rules. The rules are based on the comparison of ti, fti, and ffi. When fti = ffi,
assuming that the term MrgIf SI is well formed, all the values in f must have the same index
under i, and we degenerate to SS* rules with Rule SIDeg. For example, Single (Right 2) and
If a (Right 1) (Right 3) will be merged with Rule SIDeg under the merging strategy for sum
types for Either Integer Integer because ft and ff are both constructed with Right and have
the same index. If fti ≠ ffi, we then compare ti and fti to determine the desired position of t.
When ti < fti (Rule SILt), e.g., when t = Single 1 and f = If a 2 3, we can prove that ti is less
than the indices of all the values in f, we then know that the values in t cannot be merged with
the values in f, and in the sorted result, t should go first. When ti = fti (Rule SIEq), e.g., when
t = Single (Left 3) and f = If a (Left 2) (Right 1), the values in t and ft have the same index
ti, and we can merge t and ft using the sub-strategy for ti. When ti > fti (Rule SIGt), e.g., when
t = Single 3 and f = If a 1 2, we know that ft has the smallest index and should be the first
sub-tree in the result, and we should further merge t and ff to determine where t should go.

The following shows an example derivation tree. ms and msr are both sorted strategies. ms orders
Left before Right, while msr sorts Right values by the contained concrete integer values. A23 is
If c (Right 2) (Right 3), and A123 is If (&& (not c) a) (Right 1) (If c (Right 2) (Right 3)).

MrgIf SS msr c (Right 2) (Right 3) ⇓ A23 SSLt

MrgIf N msr c (Right 2) (Right 3) ⇓ A23
MrgIfSS

MrgIf SI msr c (Right 2) (If a (Right 1) (Right 3)) ⇓ A123
SIGt

MrgIf N msr c (Right 2) (If a (Right 1) (Right 3)) ⇓ A123
MrgIfSI

MrgIf SS ms c (Right 2) (If a (Right 1) (Right 3)) ⇓ A123
SSEq

MrgIf SI ms c (Right 2) (If a (Right 1) (Right 3)) ⇓ A123
SIDeg

MrgIf N ms c (Right 2) (If a (Right 1) (Right 3) ⇓ A123
MrgIfSI

We can prove several properties of our algorithm. First, we define the well-formed terms and
the union sizes. Then we show that well-formed MrgIf terms can be deterministically evaluated to
well-formed Values. This ensures that we can implement the algorithm as a terminating function
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MrgIf N ms (Conc True) t f ⇓ t (MrgIfTrue) MrgIf N ms (Conc False) t f ⇓ f (MrgIfFalse)

notConc(c)

MrgIf N (SimpleStrategy m) c (Single t1) (Single f1) ⇓ Single (m c t1 f1)
(MrgIfSimple)

notConc(c) ∧ MrgIf SS (SortedStrategy i s) c (Single tv) (Single fv) ⇓ A

MrgIf N (SortedStrategy i s) c (Single tv) (Single fv) ⇓ A
(MrgIfSS)

notConc(c) ∧ MrgIf IS (SortedStrategy i s) c (If tc tt tf) (Single fv) ⇓ A

MrgIf N (SortedStrategy i s) c (If tc tt tf) (Single fv) ⇓ A
(MrgIfIS)

notConc(c) ∧ MrgIf SI (SortedStrategy i s) c (Single tv) (If fc ft ff) ⇓ A

MrgIf N (SortedStrategy i s) c (Single tv) (If fc ft ff) ⇓ A
(MrgIfSI)

notConc(c) ∧ MrgIf II (SortedStrategy i s) c (If tc tt tf) (If fc ft ff) ⇓ A

MrgIf N (SortedStrategy i s) c (If tc tt tf) (If fc ft ff) ⇓ A
(MrgIfII)

Assumptions and definitions for SS* rules:

assume notConc(c) ,

assume ms = SortedStrategy i s,

assume allSameIndex(t) , allSameIndex(f) ,

let ti = i (leftMost t),

let fi = i (leftMost f)

ti < fi

MrgIf SS ms c t f ⇓ If c t f
(SSLt)

ti = fi ∧ MrgIf N (s ti) c t f ⇓ A

MrgIf SS ms c t f ⇓ A
(SSEq)

ti > fi

MrgIf SS ms c t f ⇓ If (not c) f t

(SSGt)

Assumptions and definitions for SI* rules:

assume notConc(c) , ms = SortedStrategy i s,

assume allSameIndex(t) , f = If fc ft ff,

let ti = i (leftMost t), fti = i (leftMost ft),

let ffi = i (leftMost ff)

fti = ffi ∧ MrgIf SS ms c t f ⇓ A

MrgIf SI ms c t f ⇓ A
(SIDeg)

fti ≠ ffi ∧ ti < fti

MrgIf SI ms c t f ⇓ If c t f
(SILt)

fti ≠ ffi ∧ ti = fti ∧ MrgIf N (s ti) c t ft ⇓ C ′

MrgIf SI ms c t f ⇓ If (|| c fc) C ′ ff
(SIEq)

fti ≠ ffi ∧ ti > fti ∧ MrgIf N ms c t ff ⇓ 5 ′

MrgIf SI ms c t f ⇓ If (&& (not c) fc) ft 5 ′
(SIGt)

Assumptions and definitions for II* rules:

assume notConc(c) , ms = SortedStrategy i s, t = If tc tt tf, f = If fc ft ff,

let tti = i (leftMost tt), tfi = i (leftMost tf), fti = i (leftMost ft), ffi = i (leftMost ff)

tti = tfi ∧ MrgIf SI ms c t f ⇓ A

MrgIf II ms c t f ⇓ A
(IIDeg1)

tti ≠ tfi ∧ fti = ffi ∧ MrgIf IS ms c t f ⇓ A

MrgIf II ms c t f ⇓ A
(IIDeg2)

tti ≠ tfi ∧ fti ≠ ffi ∧ tti < fti ∧ MrgIf N ms c tf f ⇓ 5 ′

MrgIf II ms c t f ⇓ If (&& c tc) tt 5 ′
(IILt)

tti ≠ tfi ∧ fti ≠ ffi ∧ tti = fti ∧ MrgIf N (s tti) tt ft ⇓ C ′ ∧ MrgIf N ms tf ff ⇓ 5 ′

MrgIf II ms c t f ⇓ If (ite c tc fc) C ′ 5 ′
(IIEq)

tti ≠ tfi ∧ fti ≠ ffi ∧ tti > fti ∧ MrgIf N ms c t ff ⇓ 5 ′

MrgIf II ms c t f ⇓ If (&& (not c) fc) ft 5 ′
(IIGt)

Fig. 3. Evaluation rules for Term, IS* rules are omi�ed as they are analogous to SI* rules
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mrgIfWithStrategy by sequentially pattern matching with the rules, and the function completely
merges mergeable values in the union operands. We also show that the evaluation will run in
bilinear time on the depth of the merging strategy and the sizes of the union operands. We will
only present some key definitions and lemmas; our proof3 is mechanized and verified in Coq 8.16.0.

The following defines a well-formed term. For Value, this notion of well-formedness ensures that
the resulting union value meets the hierarchical merging invariant (HM, Definition 3.7). For MrgIf,
it ensures that the operands meet the invariants, and there is a rule in Fig. 3 to evaluate the term.

Definition 3.12 (Well-formed term). A term C is well-formed with respect to a merging strategy
<B and a set ( if C is

(1) Value <B D such that HM(D,<B, (), or
(2) MrgIf N <B 2 C 5 such that HM(C,<B, () ∧ HM(5 ,<B, (), or
(3) a degenerate term MrgIf 3E <B 2 C 5 such that 3E ≠ N, HM(C,<B, () ∧HM(5 ,<B, (), and<B ,

2 , C , 5 meet the shared assumptions in each group, as shown in Fig. 3.

We will prove our lemmas by induction on the construction of the derivation trees for evaluating
well-formed terms with the rules in Fig. 3, and we need to establish the induction principle.

Lemma 3.13 (Induction principle for the derivation tree of well-formed terms (most

cases omitted)). To prove that a property % holds for every well-formed term C , we need to:

(1) (Value case) prove that % holds for all well-formed Value terms,
(2) (MrgIfTrue case) prove that for every<B , C , 5 such that MrgIf N <B (Conc True) C 5 is

well-formed, if % holds for Value <B C , then % holds for MrgIf N <B (Conc True) C 5 .
(3) (SSEq case) prove that for every 8=3 BD1 2 C 5 8 B , such that MrgIf SS (SortedStrategy 8=3

BD1) 2 C 5 is well-formed, if 8=3 (le�Most(C)) = 8 , 8=3 (le�Most(5 )) = 8 , BD1 (8) = B , and %

holds for MrgIf N B 2 C 5 , then % holds for MrgIf SS (SortedStrategy 8=3 BD1) 2 C 5

In the induction principle, except for the Value case, each case corresponds to an evaluation rule.
We have omitted most of them. To establish the validity of the induction principle so that we really
prove that the property holds for any well-formed terms, we need to prove that

(1) the cases covers all the well-formed terms, and
(2) in each case, the assumptions are on "smaller" terms, and
(3) for each case, the "smaller" terms are well-formed.

(1) and (3) can be routinely proved. (2) can be proved by observing that the terms in the assumptions
have smaller strategy depth or union operands, or are more degenerate forms of MrgIf than the
ones in the conclusion. With this induction principle, we can prove the following lemmas.

Lemma 3.14 (Termination). For all well-formed terms C for type 0 regarding some strategy<B

and subset ( ⊆ 0, there exists a union D such that (C = Value <B D ∨ C ⇓ Value <B D) ∧ HM(D,<B, ().

Lemma 3.15 (Deterministic). For all well-formed terms C for type 0 regarding some strategy<B

and subset ( ⊆ 0, if C ⇓ Value <B D1 and C ⇓ Value <B D2, then D1 = D2.

These lemmas imply that we can implement the function mrgIfWithStrategy with pattern match-
ing without constructing the intermediate terms, and the result would meet the hierarchical merging
strategy; thus, the algorithm will perform a complete merging. Assuming that the extraction of the
leftmost leaf takes $ (1) time, the complexity of the algorithm would be proportional to the size of
the derivation tree and would be bilinear with respect to the depth of the merging strategy and the
size of the union operands. As the merging strategy depth is usually a small constant for each type,
the algorithm would have a linear-time complexity over the size of the union operands.

3https://github.com/lsrcz/grisette-coq
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Definition 3.16 (Union size). The size of a union D (usize(D)) is defined as follows:

(1) if D = Simple E , then the size is 1, and
(2) if D = If 2 C 5 , then the size is the sum of the sizes of C and 5 .

Definition 3.17 (Degenerate Level). The degenerate level deglevel(C<) of a term C< = MrgIf3E <B 2

C 5 is 4 if 3E is N, or 3 if 3E is II, or 2 if 3E is SI or IS, or 1 if 3E is SS. Smaller means more degenerate.

Definition 3.18 (Tree size bound). For a term C for type 0 that is well-formed regarding some
merging strategy<B and subset ( ⊆ 0, we define a bound for the size of its derivation tree:

(1) 0 if C = EvalValue<B D,
(2) deglevel(3E) + 4 ∗msdepth(<B) ∗ (usize(C) + usize(5 )) if C = MrgIf 3E <B 2 C 5 ,

This bound is indeed a bound of the size of the derivation tree, which can be proven by induction.

Lemma 3.19 (Bilinear derivation tree size). For a term MrgIf <B 2 C 5 that is well-formed

regarding some merging strategy<B with depth = and subset ( ⊆ 0, the asymptotic bound of the

derivation tree size is $ (msdepth(<B) · (usize(C) + usize(5 ))).

3.4 Extra Information in Union for Implementing the Algorithm

To achieve the desired complexity and implement the merging algorithm safely, we need to maintain
additional information along with the Union structure.
First, our complexity result assumes that extraction of the leftmost leaf in the tree takes $ (1)

time. This can be achieved by caching the value of the leftmost leaf in the tree in the If constructor.

If le�Most(t1 ) 21 C1 (If le�Most(t2 ) 22 C2 (... (If le�Most(tn ) 2= C= C=+1) ...))

Second, our algorithm assumes that mrgIfWithStrategy is always called on merged Unions. If
our algorithm is implemented in a language or standalone tool, the invariants can be enforced
internally and not exposed to the user. However, if we implement our algorithm in a library, the
user will be responsible for normalizing and maintaining the invariants, and it is possible that they
forget to do so for some values. Our algorithm should be able to handle this. We keep a Boolean
variable in the If data constructor indicating whether it is already normalized. We can perform our
algorithm if this is the case, or we can normalize the whole Union bottom-up to regain the invariant.

mrgIf cond l r | notMerged l = mrgIf cond (normalizeWithStrategy mergeStrategy l) r

mrgIf cond l r | notMerged r = mrgIf cond l (normalizeWithStrategy mergeStrategy r)

mrgIf cond l r = mrgIfWithStrategy mergeStrategy cond l r -- call our main algorithm

normalizeWithStrategy st u@(If cond l r) | notMerged u =

mrgIfWithStrategy st cond (normalizeWithStrategy st l) (normalizeWithStrategy st r)

normalizeWithStrategy _ u = u

In later sections, to minimize distraction, we will not show these fields.

3.5 Error Handling with Ordered Union

Either is a standard functional error handling tool: Left values represent failed computations, while
Right values represent successful computations with result values. This allows us to represent mul-
tipath computation with failing paths with Union (Either err res). The user can then arbitrarily
define error types to record information about the failure and choose whether to allow the failures
to happen when calling the solvers. We provide the following solver interface. The config argument
configures the SMT solver, and the third Union argument is the symbolic evaluation result. The
key here is the second. It maps the Either err res values (execution results from different paths)
wrapped in the result to symbolic Boolean values, and true means that the given path is desired.

solveFallable :: config -> (Either err res -> SymBool) -> Union (Either err res) -> IO fail model
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This interface decouples symbolic evaluation and error mechanisms, allowing users to reason
about different properties of programs while only writing most of the code once. For example, for
verification applications where we want to find the inputs that cause assertion errors, while no
assumption errors should occur, the desired paths are the paths that lead to assertion violations. In
this case, we can simply treat the errors as assumption or assertion violations by mapping them to
false or true, respectively. We do not have to hardcode assert or assume in the code and change
them when we want to reason about a different property, and we can perform symbolic evaluation
once and get many tools by translating the results with different mappings.

If the differences between the errors are not useful for some queries and all of the errors will be
translated to the same Boolean value, we can achieve the assertion optimization and avoid paying
for the information recorded but not used if we merge things properly. For example, in a system
with three types of errors, the user can define the errors as follows. The error type is an algebraic
data type, so we can derive the Mergeable instance using the rules discussed before.

data Error = Error1 | Error2 | Error3 deriving (..., Generic, Mergeable)

As the Either is also an algebraic data type, it can also be merged with the merging rules described
above. The structure of the merge result is If 4AA_2>=3 Cle�_err Cright_val. All errors are collected
in the left subtree, and all values are collected in the right subtree. When all the left values are
mapped to the same Boolean values, we can just drop the whole left tree and all the disambiguation
conditions. The 4AA_2>=3 is the condition for any error to occur. It does not contain the information
to disambiguate the different types of errors, so it is very compact and clean.
In the following example, we show a sequential program with conditionals and errors along

with the equivalent Grisette code and merging result. If the user wants to find out if an error
could happen but does not care about the type of error, the whole left tree can be translated to
true, and the whole right tree will be translated to false. Then the formula to send to the solver
would be (|| a (ite b c e)), and there is no duplication in the query. This shows the assertion
optimization. Note that even if we do not treat all errors in the same way, we can still generate
compact encoding, since the disambiguation conditions are also very compact.

-- if a then error Error1 else ()

-- if b then (if c then error Error2 else d) else (if e then error Error3 else f)

mrgIf a (Single (Left Error1)) $ mrgIf b (mrgIf c (Single (Left Error2)) (Single (Right d)))

(mrgIf e (Single (Left Error3)) (Single (Right f)))

If (|| a (ite b c e))

(If a (Single (Left Error1)) (If b (Single (Left Error2)) (Single (Left Error3))))

(Single (Right (ite b d f)))

The CBMC encoding in Section 2.2 is another way to encode errors, which can be achieved with
a different merging strategy. There is no single encoding that beats all other encodings, so we leave
it configurable, and provide encodings that are generally efficient. The user can design their own
error-handling mechanism with their domain knowledge for further optimization if needed.

4 THE PROGRAMMING INTERFACE

In this section, we outline how Grisette exposes the ORG representation to programmers with
convenience type class interfaces (Section 4.1); how it integrates ORG with host language libraries
using a monadic interface (Section 4.2); and how these interfaces can be combined to write a sample
symbolic application, a synthesizer (Section 4.3).

4.1 Type Classes for Creation and Manipulation of Symbolic Values

To simplify the authoring of symbolic programs, Grisette provides support for the creation,
conversion, evaluation, and merging of symbolic values using type classes listed in Fig. 4. The
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Union data type from Section 3 already abstracts the values stored in the union; in particular, it
supports both solvable and unsolvable types that are merged in various ways. To decouple the ORG
representation from the particulars of alternative solver back-ends, we further abstract Union over
the symbolic Boolean type representing internal guards. The user can replace the built-in SymBool

type with their own representation of symbolic Booleans using the type parameter bool in Fig. 4.
We also abstract the representation of symbol sets and models using type parameters symbolSet and
model. Grisette asks that these types support some generic operations; for example, bool needs
to implement SymBoolOp, which provides symbolic Boolean operations. We expect users to rarely
switch solvers, and hence we hide this generalization with specialized versions of type classes and
functions. For example, Union specializes the generalized UnionBase to the built-in SymBool type:

data UnionBase bool a = Single a | If bool (UnionBase bool a) (UnionBase bool a)

type Union a = UnionBase SymBool a

class ToCon sym con where

toCon :: sym -> Maybe con

class ToSym con sym where

toSym :: con -> sym

class (Monoid symbolSet) =>

ExtractSymbolics symbolSet a where

extractSymbolics :: a -> symbolSet

class EvaluateSym model a where

evaluateSym :: Bool -> model -> a -> a

class SEq bool a where

(==~) :: a -> a -> bool

(/=~) :: a -> a -> bool

class (SEq bool a) => SOrd bool a where

(<~) :: a -> a -> bool

(<=~) :: a -> a -> bool

(>~) :: a -> a -> bool

(>=~) :: a -> a -> bool

class Mergeable bool a where

mergingStrategy :: MergingStrategy bool a

class Mergeable bool a => SimpleMergeable bool a where

mrgIte :: bool -> a -> a -> a

class (SimpleMergeable1 bool u, Mergeable1 bool u,

SymBoolOp bool) => UnionLike bool u | u -> bool where

single :: a -> u a

unionIf :: bool -> u a -> u a -> u a

mergeWithStrategy :: MergingStrategy bool a -> u a -> u a

mrgIfWithStrategy :: MergingStrategy bool a -> ...

mrgSingleWithStrategy :: MergingStrategy bool a -> ...

class (SymBoolOp bool, Mergeable bool a) =>

GenSym bool spec a where

genSymFresh :: (MonadGenSymFresh m, Monad u,

UnionLike bool u) => spec -> m (u a)

class GenSymSimple spec a where

genSymSimpleFresh :: (MonadGenSymFresh m) => spec -> m a

Fig. 4. Grisette type classes for support of symbolic value manipulations.

The conversion between concrete types and their corresponding symbolic representations is
provided by the type classes ToCon and ToSym. For example, they can convert between concrete
Integer and symbolic SymInteger or Union Integer values. The conversion of a symbolic value E
to a concrete value is successful only when E is fully concrete. For example, the concrete value
[1,2] :: [Integer] can be converted to the symbolic value [1,2] :: [SymInteger], after which it
can be converted back to [1,2] :: [Integer]. In contrast, the conversion of the symbolic value
[a,b] :: [SymInteger] will fail, returning a None value. ExtractSymbolics extracts all symbolic
constants into a set; for example, the set of symbolic constants of a+b+c is {a, b, c}. This set can be
used to build advanced reasoning procedures, such as Grisette’s built-in counterexample-guided
inductive synthesis (CEGIS) procedure [Solar-Lezama et al. 2006]. EvaluateSym evaluates a symbolic
value by substituting its symbolic constants with the concrete values given by a model. For example,
with the model {a ↦→ 1, b ↦→ 2}, we can evaluate a+b+c to 3+c. This function can be used to get a
concrete result or to refine the constraints and data structures. SEq and SOrd are symbolic variants
of Eq and Ord type classes. They construct symbolic formulas rather than concrete Boolean results.
Mergeable and SimpleMergeable are generalized versions of the ones in the previous section.

The GenSym and GenSymSimple are for composable generation of fresh symbolic values. The user
can build genSymFresh for complex types by composing genSymFresh for simple types. The monad
m with the MonadGenSymFresh type class ensures that two calls to genSymFresh will return distinct
values that contain distinct symbolic constants and allows for the creation of fresh symbolics in a
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purely functional way. The spec argument specifies the value space; for example, we can generate
a symbolic value representing symbolic lists of symbolic Booleans of lengths 1 to 3 with the
specification ListSpec 1 3 () (here () specifies the value space for the list elements, and SymBool

does not require any specification), and the result will be similar to the following Union value.

If a3 (Single [a2]) (If a4 (Single [a1,a2]) (Single [a0,a1,a2])) :: Union [SymBool]

4.2 The Union Monad

The Union is a tree with path conditions maintained with internal nodes. It is a monad, and its bind
operation is tree substitution. When we call u >>= f, the function f is applied over the leaf nodes
of u, and the path conditions in u will be kept. This helps to model sequential programs with tree
substitution semantics, and conditionals can be modeled with mrgIf.

instance SymBoolOp bool => Monad (Union bool) where

Single a >>= f = f a

If cond ifTrue ifFalse >>= f = If cond (ifTrue >>= f) (ifFalse >>= f)

do v1 <- mrgIf a (return [x1]) (return [y1, y2]) -- If a (Single [x1]) (Single [y1, y2])

v2 <- mrgIf b (return [x2]) (return [y3]) -- Single [(ite b x2 y3)]

return $ v1 ++ v2 -- result: If a (Single [x1, ite b x2 y3]) (Single [y1, y2, ite b x2 y3])

Note that >>= may not correctly maintain the invariant. As an unconstrained monad, we cannot
make any assumption on the result type of >>=, including the Mergeable constraint, so we can only
use If instead of mrgIf to construct the result. This forces the user to merge the result explicitly for
the binds (do-blocks) by normalization. To reduce this boilerplate, we introduce another monad
called UnionM (generalized as UnionMBase), which is a Union with a possibly cached merging strategy.

data UnionMBase bool a = UMrg (MergingStrategy bool a) (Union bool a) | UAny (Union bool a)

instance SymBool bool => UnionLike (UnionMBase bool) where -- more cases and functions omitted

unionIf cond (UMrg st ul) (UAny ur) = UMrg (mrgIfWithStrategy st cond ul ur)

unionIf cond (UAny ul) (UAny ur) = UAny (unionIf cond ul ur)

The UnionLike class in Fig. 4 generalizes common operations for union-like containers, including
Union, UnionM and containers transformed with monad transformers. The unionIf function gener-
alizes the If constructor and can be called in >>=, and the mrg* functions are generic interfaces
that try to cache the merging strategy. For UnionM, unionIf merge the results with cached merging
strategies when possible, and can be used in >>= to maintain the invariant. This technique is known
as knowledge propagation [Kiselyov 2013]. We generalize mrgIf for UnionLike, and also provide
monadic combinator wrappers, for example, mrgReturn, to capture the strategies. When the user
sticks to the mrg* variants, they do not have to manually normalize and maintain the invariants.

Being monadic helps us compose various features onto our core symbolic evaluation semantics,
and UnionLike provide a unified interface for transformed union containers. For example, we can
support errors with ExceptT err UnionM a, which wraps a UnionM bool (Either err a) value, by
implementing the following UnionLike instance (only mrgIfWithStrategy is shown):

instance (SymBoolOp b, UnionLike bool m, Mergeable b e) => UnionLike b (ExceptT e m) where

mrgIfWithStrategy s cond (ExceptT t) (ExceptT f) =

ExceptT $ mrgIfWithStrategy (liftMergingStrategy s) cond t f -- lift provided by Mergeable1

This approach can also be applied to other monad transformers, and we have implemented the
UnionLike instance for all transformers from mtl and most of the carriers in fused-effects.

4.3 Example Program Synthesizer

The usual workflow to build a tool in Grisette is (1) to define data structures (e.g., abstract syntax
trees) and type class instances for them, (2) to define the interpreter for the language, (3) to define
the symbolic program, its inputs and desired behaviors, and call the solver. In the following code,
we show a sample skeleton of a program synthesizer in Grisette following this workflow.
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1 data CProgram = CInt Integer | CAdd CProgram CProgram | ...

2 deriving (Show, Generics) deriving (ToCon SProgram, ...) via (Default CProgram)

3 data SProgram = SInt SymInteger | SProgram (UnionM SProgram) (UnionM SProgram) | ...

4 deriving (Show, Generics) deriving (ToSym CProgram, EvaluateSym Model, ...) ...

5 data Error = ... deriving (Show, Generics) deriving (Mergeable SymBool, SEq SymBool, ...) via ...

6 data Result = ... deriving (Show, Generics) deriving (Mergeable SymBool, SEq SymBool, ...) via ...

7 interpreter :: SProgram -> ExceptT Error UnionM Result

8 instance GenSym SymBool ProgramSpaceSpec SProgram where ...

9 sketch :: UnionM SProgram

10 sketch = genSym programSpaceSpec "sketch"

11 desiredBehavior :: Either Error Result -> SymBool

12 do res <- solveFallable config desiredBehavior (lift sketch >>= interpreter)

13 case res of

14 Left failure -> print failure

15 Right m -> do -- a model. Values for irrelevant symbolic constants may be missing

16 print m -- The model can be printed as a mapping from symbolic constants to values

17 let program = evaluateSym True m sketch -- True: assign default values for missing constants

18 print (interpret program) -- The evaluation result of the synthesized program

19 let Just concreteProgram = toCon program :: Maybe ConcreteProgramType

20 print concreteProgram -- concrete programs usually have better pretty printers

The first six lines define the program syntax, errors, and results. The CProgram and SProgram are
for concrete and symbolic programs, respectively. They have the same AST structure, but SProgram
has symbolic fields (with solvable values) and UnionMs to select among sub-nodes. These types can
derive the type classes shown in Section 4.1 with GHC DerivingVia extension, including ToCon

and ToSym, which are available for types with aligned structures. In line 7, we write a monadic
interpreter for SProgram. The ExceptT transformer extends UnionM with error handling mechanisms,
as shown in the last section. The user can call throwError to raise an error, and internally the errors
and values would be merged as Either. We then define how to generate a program sketch from
a program space specification in line 8, and use it to generate a sketch. genSym calls genSymFresh
and runs the resulting monad with a unique name to generate fresh symbolic constants. The result
is a symbolic program with holes (symbolic constants) to be filled in by the solver. In line 11,
we specify the desired behavior by mapping Either Error Result to SymBool. SEq and other type
classes are handy for this. In line 12, we interpret the program sketch and call the solver. The result
can be pattern-matched for a failure or a model. If the solver returns a model, we can obtain the
synthesized program using evaluateSym. We can then interpret the synthesized program for the
evaluation result. We may also convert it to a concrete program using toCon.

5 EVALUATION

We evaluate the Grisette tool in this section to understand the following research questions.

RQ1 Is Grisette expressive compared to the state-of-the-art symbolic host language?
RQ2 How can a static type system help write code with fewer performance and safety bugs?
RQ3 How does Grisette perform compared to the state-of-the-art symbolic host language?
RQ4 How does the default encoding compare with the CBMC encoding for errors?
RQ5 How can memoization further accelerate symbolic compilation?
RQ6 How does Grisette perform compared to single-path systems?

5.1 RQ1: Expressiveness of Grisette

To evaluate Grisette’s expressiveness and performance, we ported several benchmarks from
the state-of-the-art tool Rosette 4 [Porncharoenwase et al. 2022].4 Rosette 4’s benchmark set

4https://github.com/lsrcz/grisette-benchmarks
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consists of 16 benchmarks in total. We only ported five of them with less than 1000 lines of code
because it takes much effort to fully understand the original code and port it. Table 2 shows
the statistics. Grisette code is expected to be longer than the Rosette version because type
annotations, Haskell library organization, and do-blocks require more lines. Although the Rosette
3 and Rosette 4 codes have the same LoC, the code may be slightly different. As different solvers
have different performances in different projects, we list the solvers in the original benchmark and
evaluate Grisette and Rosette both with them. The Rosette versions have already been tuned
for performance with SymPro [Bornholt and Torlak 2018] by the SymPro’s authors, so we assume
that symbolic profiling cannot easily find more performance bugs. To ensure that the performance
differences are caused by Grisette itself, including merging algorithms, evaluation models, and
various mechanism implementations, all benchmarks are ported by line-by-line translation, unless
we need to restructure the code to fit Grisette’s type system. Another unavoidable factor that
affects performance is that Rosette and Grisette are implemented in different languages. To
mitigate this, we implemented a new MEG-based Union with the Rosette algorithm adapted to
static type settings. This approach reuses all other infrastructure that is not coupled with ORG
algorithm, eliminates the impact of dynamic type checking and different SMT term optimizers, and
is a better choice for comparing the performance of the core algorithms in a typical Haskell setting.

Table 2. Statistics of the benchmarks

Name Grisette LoC Rosette 3/4 LoC LoC diff (G-R) Solver

Bonsai-NanoScala [Chandra and Bodik 2017] 663 439 +224 (+51%) Boolector

Bonsai-LetPoly [Chandra and Bodik 2017] 750 427 +323 (+76%) Boolector

Cosette [Chu et al. 2017] 661 532 +129 (+24%) Z3

Ferrite [Bornholt et al. 2016] 538 348 +190 (+55%) Z3

Fluidics [Willsey et al. 2019] 141 98 +43 (+44%) Z3

IFCL [Torlak and Bodik 2014] 653 483 +170 (+35%) Boolector

RegexCont 239 N/A N/A Z3

RegexFree 219 N/A N/A Z3

The benchmark programs are designed for a variety of different tasks, showing that Grisette is
expressive enough for a wide range of tasks previously built with state-of-the-art tools. Ferrite is
a tool to specify and check crash-consistency models for file systems. It can verify a file system
implementation against a model or synthesize sufficient barriers to ensure that a program with file
I/O system calls has the desired crash-safety properties. IFCL is a functional symbolic DSL that
specifies and verifys the executable semantics of abstract stack-and-pointer machines that track
dynamic information flow to enforce security properties. Fluidics is a small DSL for synthesizing
microfluidic array manipulation. Cosette is an automated SQL prover. It executes SQL queries
symbolically to decide query equivalence. Cosette heavily relies on Racket’s macro system for
staged computation. Similar functionalities can be implemented with Template Haskell [Sheard
and Jones 2002] as everything in the host language is available in Grisette. We only implemented
part of the original system that is relevant to the benchmark and removed irrelevant lines from
the Rosette versions, so our LoC metrics differ from those reported in the original Rosette 4
paper. We also found a typographical error in the original implementation. Fixing it makes the
Rosette version generate smaller formulas and run faster. Our performance results are based on
the fixed version. Bonsai is a data structure specialized for efficient synthesis-based reasoning
for type systems. It allows more syntax tree merging and is capable of representing large search
spaces in a very compact way. This enables reasoning for real-world type systems and can detect
soundness issues in the DOT type system (the underlying type system of Scala 3) [Amin et al. 2016]

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 16. Publication date: January 2023.



16:24 Sirui Lu and Rastislav Bodík

with null references and a historical bug involving let-polymorphism with mutable references,
for example, ML [Tofte 1990; Wright and Felleisen 1994]. Only the DOT type system is used as
a Rosette 4 benchmark. However, as we shall see in later sections, Grisette runs fast on the
5 Rosette 4 benchmarks. Therefore, to further evaluate the performance of Grisette with a
larger-scale problem, we also implemented the let-polymorphism benchmark from the original
Bonsai paper, based on its repository.
We additionally implemented a backtracking regex synthesizer with both delimited coroutines

and free monads. This shows that Grisette is capable of expressing tasks that cannot be easily
expressed with Rosette, and we will use them to evaluate the effectiveness of memoization.

5.2 RQ2: Porting Cosette

It is known that tuning the performance or debugging symbolic evaluators can be tricky [Bornholt
and Torlak 2018; Torlak 2022], and we have discussed the use of static type systems to avoid
performance bugs in Section 2.3.1. In this subsection, we will show that we can improve the
development experience with static types with a case study on porting Cosette to Grisette.

In a symbolic host language, to implement a tool, we first design the concrete type and algorithms
in mind and then make them symbolic. In Rosette, there is no boundary between concrete and
symbolic types, and everything can automatically be symbolic, so we can write code like concrete
code and get a symbolic evaluator. This is very convenient, but it can lead to performance problems
when too much symbolicness is accidentally introduced with inappropriate representations. Born-
holt and Torlak [2018] showed that such problems can be prevalent and provided a profiler-based
approach to identify them. For the Cosette project, they successfully identified and fixed one
problem, causing a 75-fold speedup, making previously infeasible queries feasible.
The fix is based on the observation that we can avoid introducing some symbolicness with a

multiset-based table encoding in Cosette. The equivalent Grisette version of the fix is as follows:

type RawTable = [(Data, Multiplicity)]

data Table = Table { ... , tableContent :: UnionM RawTable }

symFilter (\(rowdata, mult) -> pred rowdata) tbl :: UnionM RawTable -- original

fmap (\(rowdata, mult) -> (rowdata, mrgIte (pred rowdata) mult 0)) tbl :: RawTable -- fix

The predicate pred is symbolic, so the filter call inRosetteworks symbolically, which is equivalent
to the symFilter function in Grisette. It introduces symbolicness in the length of the table type,
and the result has to be wrapped in a UnionM. The fix avoids this extra symbolicness by setting the
multiplicity for the rows that do not meet the predicate to 0 instead of removing it from the table.
This does not change the length of the table, and no extra symbolicness is introduced.

Although SymPro is capable of finding some performance bugs like this, it is not complete,
and more such bugs can exist. In Grisette, however, if we understand that we do not have to
introduce this symbolicness upfront, we can constrain that no such extra symbolicness exists with
the types. With the following type, the inefficient overly-symbolized code will be identified by the
type checker. We changed the code to make it type-check, and this brings another 8.7x speedup as
shown in Table 3 where Cosette-1 is the optimized version and Cosette is the original version.

data Table = Table { ... , tableContent :: UnionM RawTable } -- No UnionM here

symFilter :: (UnionLike m, Mergeable a) => (a -> SymBool) -> [a] -> m [a] -- Does not work.

This approach to constrain the representation with data type declarations is the most general and
easiest way to control merging with domain knowledge in Grisette. More fine-grained control
can be performed by manually implementing a Mergeable instance, although this is rarely needed.

After we implemented the optimized version in Grisette, which was just simple changes to fix
the type errors, we backported the optimized algorithm to Rosette. Without static type checking,
our first version was buggy, as we used car instead of cdr to extract the multiplicity from the
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data-multiplicity pairs. In Grisette, these errors can be detected at compile time, but in Rosette,
the errors would be caught by Rosette at runtime and converted to assertions, and the only
uninformative message we get is that the verifier cannot find a counterexample. Although we easily
found this bug with the symtrace tool [Torlak 2022] to collect and analyze the execution trace, we
believe it is better to have the ability to report bugs to the user statically during compilation.

5.3 RQ3: Running the Benchmarks

To evaluate the performance of Grisette, wemostly followed the benchmarkmethods of Rosette 4.
We compared the running time and encoding size of Grisette, Grisette (MEG), Rosette 4 and
Rosette 3 for each benchmark. We also compared the optimized Cosette and its backported
versions, which are shown as Cosette-1. We collected all performance metrics using GHC 9.0.2
and Racket v8.1 on an AMD Ryzen 1950X processor at 3.4 GHz with 128 GB of RAM. The SMT
solvers we use are Z3 v4.8.8 [Moura and Bjørner 2008] and Boolector v3.2.1 [Brummayer and Biere
2009] compiled locally on Ubuntu 22.04 LTS. Table 3 shows the results. The total time (s), symbolic
evaluation time (s), solving time (s), and encoding size (×103) are reported. The symbolic evaluation
time includes the time to generate the solvable type encoding (pure evaluation time), lower the
solvable terms to SMT terms, and send the terms to the solver. It is collected as the CPU time
consumed by Haskell or Racket. Our current lowering implementation is slow (see the E time and
PE time of LetPoly in Table 3), and the bottleneck is the external package sbv which is much more
high-level and does more things than we need. Due to this, for the Grisette benchmarks, the pure
evaluation time is also reported. This number will only be used to compare different Grisette
approaches. The solving time is calculated by the difference between the total wall clock time and
the CPU time. Table 4 shows the best, worst, and geometric mean performance ratios of Grisette
over Grisette (MEG), Rosette 3 and Rosette 4 on the benchmarks, including optimized ones,
excluding the regex benchmarks, as they are only available in Grisette. The time metrics are
shown as speedup ratios, and the term count metric is shown as percentages.

Table 3. Performance results for the ported and optimized benchmarks. T (s), E (s), PE (s), S (s), and Tm (×103)
represent total time, evaluation time, pure evaluation time, solving time, and term count, respectively.

Benchmark
Grisette Grisette (MEG) Rosette 3 Rosette 4

T E PE S Tm T E PE S Tm T E S Tm T E S Tm

Ferrite 2.4 .79 .42 1.6 12 8.8 2.3 .53 6.5 56 25 17 8.0 34 34 17 17 40

IFCL 33 4.1 .67 29 91 38 9.4 1.6 29 222 194 14 180 383 147 14 133 438

Fluidics 19 3.3 .52 15 84 198 122 4.3 77 1371 23 8.4 15 284 29 8.8 20 308

Cosette .27 .094 .045 .18 1.5 1.6 .44 .18 1.1 8.4 16 7.9 7.8 114 12 8.1 4.1 128

DOT 1.8 1.1 .34 .68 21 4.9 4.0 1.2 .92 71 27 23 3.8 664 52 47 4.3 1222

LetPoly 77 13 7.8 64 102 1009 833 108 176 1725 1396 186 1210 4908 1284 142 1142 5152

Cosette-1 .031 .01 .004 .021 .077 .03 .011 .007 .019 .077 .16 .14 .025 .13 .15 .13 .025 .13

RegexCont 3.9 3.6 2.9 .3 16 60 53 13 7.1 311

RegexFree 4.8 4.5 3.7 .29 16 63 54 14 8.9 318

Table 3 and Table 4 show that Grisette almost always outperforms Rosette 3/4 in both time
metrics and encoding size on the benchmarks, except that Grisette produces a slightly harder-
to-solve formula for Fluidics. On average, Grisette accelerates symbolic compilation over the
state-of-the-art Rosette 4 tool by approximately 14.1x, generates approximately 91% smaller
formulas, and accelerates the solving of the resulting formula by about 5.7x. For some benchmarks,
for example,Cosette, the running time and size of the formulas are evenmore reduced. Considering
that Grisette has different algorithms in all kinds of mechanisms from Rosette, to evaluate the
effectiveness of ORG semantics, we compared Grisette with a variant of Grisette with MEG
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semantics, which shares all infrastructures with Grisette but ORG semantics. To compare the
two methods, we suggest comparing the pure evaluation time, solving time, and term sizes, as the
MEG version is greatly affected by the slow back-end. Compared to Grisette with MEG semantics,
Grisette with ORG semantics is almost always better, except that the MEG version compiled
IFCL into larger but easier-to-solve formulas. We noticed that the MEG semantics perform badly,
especially on the Fluidics, LetPoly, and regex benchmarks. A reasonable explanation for this is
that the three benchmarks create union containers with many branches; for example, in the regex
benchmarks, the concrete integers need to be kept separate if they are not equal. This would cause
the MEG approach to generate extra large disambiguation conditions.

Table 4. Performance ratios of Grisette over Grisette (MEG), Rosette 3 and Rosette 4

Version
Total time Eval time Solve time Term count

best worst mean best worst mean best worst mean best worst mean

Grisette (MEG) 13.1x 1.0x 3.7x 64.4x 1.1x 6.1x 6.3x 0.9x 2.4x 5.9% 100.0% 20.8%

Rosette 3 57.2x 1.2x 9.3x 83.3x 2.5x 13.0x 43.5x 0.9x 5.5x 1.3% 60.6% 10.4%

Rosette 4 44.3x 1.6x 10.1x 85.9x 2.7x 14.1x 22.5x 1.2x 5.7x 1.2% 59.2% 8.8%

5.4 RQ4: Compare the Default Error Encoding with the CBMC Error Encoding

To evaluate error encodings, we manually analyzed the benchmark programs and found that IFCL,
NanoScala and LetPoly are affected by it. Other programs only use a single error type, and there
should be no large differences between the two encodings, so we only ported the three benchmarks
to the CBMC error encoding. Table 5 shows that in general the CBMC encoding generates slightly
smaller formulas but may be easier or harder to solve than the default encoding based on the ADT
merging rules. This indicates that no single error encoding is suitable for every scenario, and the
user may try different encodings and choose the fastest one.

Table 5. Performance result for the selected benchmarks with the default encoding and CBMC error encoding

Benchmark
Grisette Grisette (CBMC error encoding)

T E PE S Tm T E PE S Tm

IFCL 33 4.1 .67 29 91 72 4.1 .67 68 91

DOT 1.8 1.1 .34 .68 21 1.6 1.0 .32 .57 20

LetPoly 77 13 7.8 64 102 71 12 7.7 59 91

5.5 RQ5: Effectiveness of Memoization

To evaluate the effectiveness of memoization, we analyzed the ported projects and found that
Bonsai had the substructures needed for memoization. The backtracking regex synthesizer can
also be optimized, so it is also added for benchmarking. The lowering has performance issues in
our scenario: in the NanoScala and Regex benchmarks, lowering is even slower than solving,
and this part cannot be accelerated with memoization. Therefore, in this subsection, the reported
evaluation time does not contain the lowering and the solver interaction times.

Table 6 shows that memoization is capable of improving the performance of symbolic evaluation,
further accelerating the symbolic evaluation by 1.6–7.9x and overall performance by 1.2–7.5x.

5.6 RQ6: Performance of All-Path Symbolic Evaluation

To evaluate the performance of all-path symbolic evaluation in various tasks, we compared our
system with G2Q [Hallahan et al. 2019a], which is the user-friendly quasiquoter interface to
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Table 6. Benchmarks for memoization

Benchmark
no memoization with memoization speedup ratio

Total Eval Lower Solv Total Eval Lower Solv Total Eval

DOT 2.4 1.8 .71 .68 1.8 1.1 .74 .68 1.4x 1.6x

LetPoly 96 30 4.9 66 77 13 5.1 64 1.2x 2.3x

RegexCont 25 25 .5 .29 3.9 3.6 .64 .3 6.5x 6.9x

RegexFree 36 35 .5 .3 4.8 4.5 .82 .29 7.5x 7.9x

the G2 [Hallahan et al. 2019b] symbolic execution engine in Haskell. Note that G2 is a search-
based engine and is not an all-path symbolic evaluator in our definition. G2Q was evaluated with
four programs that demonstrate a wide range of applications: an n-queen solver, a solver to find
matching strings for regexes, a program verifier for an imperative arithmetic language, and a
program synthesizer for lambda expressions with de Bruijn indexing [de Bruijn 1972]. We ported
the benchmarks for the four programs to Grisette and compared the performance.5

Table 7. G2Q benchmarks

Task Paper (s) Reproduction (s) Grisette (s)

badEnvSearch prog 59.32 45.47 0.02

Search for non-zero Mul x y == Add x y 0.56 0.44 0.10

solveDeBruijn for id 0.04 Runtime Error 0.02

solveDeBruijn for const 1.06 Runtime Error 0.02

solveDeBruijn for NOT Timeout Runtime Error 0.02

solveDeBruijn for OR 86.22 Runtime Error 0.15

solveDeBruijn for AND Timeout Runtime Error 0.40

solveQueens 4 0.36 0.27 0.03

solveQueens 5 0.55 0.47 0.03

solveQueens 6 0.90 0.76 0.03

solveQueens 7 1.47 1.26 0.03

solveQueens 8 2.30 2.05 0.04

stringSearch for (a+b)*c(d+(ef)*) 0.26 0.20 0.03

stringSearch for abcdef 4.23 3.91 0.12

stringSearch for a+b+c+d+e+f 0.05 0.04 0.03

stringSearch for a*b*c*d*e*f* 0.02 0.04 0.02

Table 7 shows the performance of G2Q and Grisette. As we failed to reproduce the de Bruijn
benchmarks due to runtime errors, we list all the numbers from both the original paper [Hallahan
et al. 2019a] and our reproduction. Being a single-path tool allows G2 to be used to reason about
unbounded data structures with built-in search strategies, as the paths do not have to be exhausted
before we can generate the constraints. This works well for test generation, while poor performance
is expected for some nontraditional tasks, including synthesis.

In contrast, Grisette can solve all benchmarks in less than 1 second. We do not have a built-in
search procedure in Grisette, but we can easily implement some search strategies directly in
the benchmark program. We search iteratively with larger sketches based on some program size
measure. This is one of the most common ways to search for similar tools.

6 RELATED WORK

Many programming language and software engineering problems, including program verification,
synthesis, model checking, and angelic execution, are enabled by the development of constraint

5https://github.com/lsrcz/grisette-g2q-benchmarks
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solvers. In these applications, the semantics of the program are generally encoded as constraints,
and a constraint solver is called to find solutions to the problem.
The hardest part when implementing these tools is usually reducing program semantics to

constraints, as programming to manipulate the constraints can be cumbersome and error-prone.
This brings about the need for reusable symbolic evaluators to hide the details, and the user can
get symbolic evaluators specialized for their task for free after implementing some interpreters.
Languages with reuseable symbolic evaluators are called symbolic host languages, and they

should be versatile enough to support different types of queries. The original single-path symbolic
execution may not scale in some scenario, especially for synthesis and bounded model checking
queries, in which we are required to reason about all execution paths simultaneously, and path
selection techniques do not apply. A proven to work approach to make a symbolic host language
versatile is to use all-path symbolic execution with state merging [Torlak and Bodik 2014]. It
balances the symbolic evaluation cost and complexity of solver queries and enables large-scale
verification and synthesis applications with reusable symbolic host languages.

6.1 Constraint Solving Based Program Reasoning

Constraint solvers are widely used in all kinds of program reasoning. Klee [Cadar et al. 2008a]
is a dynamic symbolic execution tool built on top of LLVM. The system uses constraint solvers
to automatically generate high-coverage tests. Saturn [Xie and Aiken 2005] is a tool that uses
SAT solvers and symbolic execution for path-sensitive intraprocedural analysis with pointers and
heap data. CBMC [Clarke et al. 2004] is a model checker for ANSI C that compiles C programs
into SMT formulas. Sketch [Solar-Lezama et al. 2006] is a program synthesis tool that compiles
programs with holes into SMT formulas and reduces quantifiers with a counterexample-guided
inductive synthesis approach. Java Pathfinder [Havelund and Pressburger 2000] is a system
that verifies Java bytecode programs with constraint solvers. Angelix [Mechtaev et al. 2016] is
a semantics-based automated program repair tool. It generates repairs for large-scale real-world
software with angelic execution, where patched expressions are inferred by the constraint solvers.

6.2 Reusable Symbolic Evaluators

Many symbolic evaluators are reusable and capable of hosting DSLs. Boogie [Leino and Rümmer
2010] is an intermediate verification language whose symbolic compiler compiles programs to the
input language of the Z3 solver [Moura and Bjørner 2008]. Dafny [Leino 2010] and Spec# [Barnett
et al. 2004] are standalone languages for program verification built on top of Boogie. Leon [Blanc
et al. 2013] and Kaplan [Köksal et al. 2012] are high-level embedded languages in Scala. Leon
supports verification and deductive synthesis queries for programs in a purely functional subset of
Scala. Kaplan uses Leon’s symbolic compiler to support a restricted form of angelic execution.
They support unbounded domains and recursions, while in Grisette, data types or recursions
must be bounded with self-finitization. However, as an embedded DSL rather than a simple library,
they are not as extensible as Grisette, which works with various functional programming infras-
tructures and meta-programming constructs. Rubicon [Near and Jackson 2012] lifts a subset of
Ruby with symbolic values to specify bounded verification queries about Rails web applications.
Rosette [Porncharoenwase et al. 2022; Torlak and Bodik 2013, 2014] is a versatile symbolic host
language that lifts part of Racket with symbolic constructs; it generates high-performance formulas
for synthesis, verification, angelic execution, and fault localization queries with symbolic DSLs.
The system provides the full Racket language including metaprogramming to the user for flexible
implementation of SDSLs. Smten [Uhler and Dave 2013, 2014] is a GHC plugin for lifting Haskell
with symbolic constructs and solver-aided queries. The Compiling to Categories [Elliott 2017] work
is not designed specifically for symbolic compilations. It supports compiling to SMT constraints via
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transforming Haskell code by its GHC plugin to computation graphs. G2Q [Hallahan et al. 2019a]
uses the G2 [Hallahan et al. 2019b] symbolic execution engine to build solver queries from Haskell
code. Another work [Wei et al. 2020] builds a symbolic execution engine compiler in Scala with
staging and algebraic effects, but it is not intended to perform an all-path symbolic compilation.

6.3 State Merging Strategies

Although state merging techniques effectively tackle the path explosion problem andmake symbolic
compilation faster, they also make the resulting constraint harder to solve [Godefroid 2007; Hansen
et al. 2009], and may cause more path exploration [Bornholt and Torlak 2018; Kuznetsov et al. 2012].
Kuznetsov et al. [2012] discussed the design space for state merging as a spectrumwith two extremes:
(1) complete separation of paths, as in the King-style search-based symbolic execution [Boyer et al.
1975; Cadar et al. 2008a,b; Godefroid et al. 2005; King 1975, 1976], and (2) complete static state
merging, as in whole-program program reasoning tools [Clarke et al. 2004; Solar-Lezama 2008; Xie
and Aiken 2005]. Query count estimation [Kuznetsov et al. 2012] relies on static analysis to identify
the states that may be beneficial to merge. Veritesting [Avgerinos et al. 2014] only performs
state merging on a subset of states. It classifies the statements into easy statements and difficult
statements, and it only performs state merging for easy statements. Rosette [Torlak and Bodik
2014] implements a lightweight symbolic virtual machine which merges states at each control-flow
join. The values in the program state are merged with a MEG data structure in a type-driven way.
Those values that have the same type (shape) will be merged, such as two lists having the same
length. The data structures are merged recursively, requiring the ability to break the boundaries
between symbolic types and concrete types, thus only works in dynamic-typed scenario or inside a
compiler. MultiSE [Sen et al. 2015] develops a similar approach as Rosette, but it does not merge
data structures recursively. In our scenario, where algebraic data types are extensively used, this
approach cannot merge well. Sinha [Sinha 2008] also develops state merging strategies similar to
Rosette or MultiSE, but uses nested ites to represent symbolic states and perform merging with
rewrite rules. It does not normalize and merge all mergeable states.

7 CONCLUSION

In this paper, we described the design and implementation of a statically-typed monadic symbolic
evaluation library that is efficient and user-friendly. The key to its efficiency is a novel state merging
and normalization algorithm with ordered guards state representation. The algorithm provides
a clean abstraction for all kinds of data types, which enables high-performance and configurable
verification condition generation for free. With static types, the whole system is configurable with
type class abstractions, allowing nice integration with the host language libraries. Static types
also allow the user to tune the performance more easily and confidently. The monadic abstraction
provides a clean interface to symbolic evaluation with configurable mechanisms and unstructured
control flows almost for free. Compared to state-of-the-art systems, our system generates more
compact formulas in a shorter time, while still being very expressive and user-friendly.
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