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Modern optimizing compilers generate efficient code but rarely achieve theoretical optimality, often neces-
sitating manual fine-tuning. This is especially the case for processors with vector instructions, which can
grow the instruction set by an order of magnitude. Super-optimizers can synthesize optimal code, but they
face a fundamental scalability constraint: as the size of the instruction set increases, the length of the longest
synthesizable program decreases rapidly.

To help super-optimizers deal with large instruction sets, we introduce HieraSynth, a parallel framework
for super-optimization that decomposes the problem by hierarchically partitioning the space of candidate
programs, effectively decreasing the instruction set size. It also prunes search branches when the solver proves
unrealizability, and explores independent subspaces in parallel, achieving near-linear speedup. HieraSynth is
sufficiently efficient to run to completeness even on many hard problems, which means that it exhaustively
explores the program space. This ensures that the synthesized program is optimal according to a cost model.

We implement HieraSynth as a library and demonstrate its effectiveness with a RISC-V Vector super-
optimizer capable of handling instruction sets with up to 700 instructions while synthesizing 7–8-instruction
programs. This is a significant advancement over previous approaches that were limited to 1–3 instructions
with similar instruction set sizes. Specifically, HieraSynth can handle instruction sets up to 10.66× larger
for a given program size, or synthesize up to 4.75× larger programs for a fixed instruction set. Evaluations
show that HieraSynth can synthesize code surpassing human-expert optimizations and significantly reduce
synthesis time, making super-optimization more practical for modern vector architectures.
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1 Introduction

Modern compilers generate performant code but are not designed to generate the fastest possible
code. For performance-critical applications, experts still hand-craft hardware-specific assembly.
These kernels are especially challenging for complex vector instruction set architectures (ISAs),
whose numerous semantic variants create non-obvious combinatorial optimization opportunities.
Our analysis of expert-written RISC-V Vector libraries reveals a 2–4× performance gap between
hand-optimized code and the theoretical optimum (see our case study with the Highway library [16]
in Section 7.6).

Authors’ Contact Information: Sirui Lu, University of Washington, Seattle, USA, siruilu@cs.washington.edu; Rastislav
Bodík, Google DeepMind, Mountain View, USA, rastislavb@google.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART384
https://doi.org/10.1145/3763162

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 384. Publication date: October 2025.

https://orcid.org/0000-0003-2757-7603
https://orcid.org/0000-0001-6639-1647
https://doi.org/10.1145/3763162
https://orcid.org/0000-0003-2757-7603
https://orcid.org/0000-0001-6639-1647
https://orcid.org/0000-0001-6639-1647
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763162
https://www.acm.org/publications/policies/artifact-review-and-badging-current


384:2 Sirui Lu and Rastislav Bodík

Super-optimizers [24, 29, 32, 37, 40] help close this gap by searching for instruction sequences
with improved performance. Unlike traditional compilers, which heuristically rewrite programs,
super-optimizers search a space of candidate programs to find one that is correct and faster than a
goal specified by a cost model (e.g., an approximate cycle count). A super-optimizer is complete if it
searches this space exhaustively. Combined with an accurate cost model, this completeness proves
that the generated program is optimal, assuring experts that further manual tuning would be futile.

A super-optimizer is useful only if it finishes its search in a reasonable time. Two parameters
determine the program space size—and hence the computational challenge:

(1) (Output) program size 𝑘 : Maximum instructions per candidate program.
(2) Instruction set size 𝑛: Number of distinct ISA instructions available.

These parameters define a program space with Ω(𝑛𝑘 ) candidates, which makes exhaustive
enumeration practical only if 𝑘 , 𝑛, or both are restricted. Two complete super-optimizers illustrate
the opposite ends of the spectrum: Brahma [15, 24] synthesizes programs up to 16 instructions
long, but only by restricting the instruction set to a small, expert-chosen subset. In contrast,
Minotaur [29] handles an x86 SIMD ISA, which includes hundreds of instructions, but is limited
to synthesizing single-instruction programs in practice. This strong inverse relationship between
instruction set size 𝑛 and feasible program size 𝑘 is evident across Lens [37], Souper [40], and other
complete super-optimizers. This trade-off severely limits super-optimization for modern vector
ISAs, which require both large instruction sets and multi-instruction sequences.

An common approach to mitigate the limitation is to decompose the problem along the 𝑘
dimension. For example, Lens [37] includes a peephole-style [33] variant that optimizes smaller
program windows independently. Unfortunately, some optimal programs cannot be constructed by
concatenating independently optimized windows because all 𝑘 instructions must cooperate closely
in the computation. Another approach is to abandon the exhaustive search. Stochastic search
(STOKE [41]), machine learning (DreamCoder [13]), and equality saturation (Diospyros [47]) can
handle larger programs, but cannot guarantee optimality.

These limitations raise a key question: Can we decompose the program space without sacrificing
completeness? Our answer is to shift decomposition from program size (𝑘) to instruction selection
(𝑛) using a hierarchical and adaptive approach. We partition the program space into subspaces,
each containing a progressively smaller set of instructions. This decomposition preserves both long
program synthesis (sufficient 𝑘) and full ISA coverage (large 𝑛), ensuring optimality.

However, a successful decomposition on 𝑛 requires careful control of subspace size, which
directly determines feasibility. The smallest possible subspaces would contain multisets of exactly
𝑘 instructions—just enough to build a 𝑘-instruction program. But this fine-grained decomposition
creates𝐶 (𝑛 +𝑘 − 1, 𝑘) subspaces (drawing a 𝑘-sized multiset from 𝑛 instructions with replacement);
for 𝑘 = 8 and 𝑛 = 400, this exceeds 1018 subspaces, making exhaustive exploration impossible. Using
larger subspaces reduce this count, but they become harder for the synthesizer to solve. Ideally,
subspaces should be as large as possible while remaining solvable. Previous work on instruction set
decomposition [17] has developed static partitioning policies, but static approaches cannot adapt
to problem difficulty, which varies across problem instances.

Our decomposition is adaptive: it begins with the full instruction set and recursively splits
subspaces until each becomes solvable by the base synthesizer. This top-down approach creates
only as many subspaces as needed, adapting to the difficulty of each synthesis problem while
preserving completeness. It also prunes entire subspaces when a solver proves them unrealizable.
We develop these ideas in HieraSynth, a parallel framework that uses decomposition to achieve a
qualitative leap in the scalability of super-optimization. HieraSynth substantially improves on the
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𝑘-vs-𝑛 trade-off, enabling the discovery of low-cost code that surpasses human-expert optimizations.
In many cases, HieraSynth is complete, proving that it has found an optimal program.

Our approach builds on three core capabilities:

(1) Completeness-preserving hierarchical decomposition: Our framework enables adaptive, hier-
archical decomposition on 𝑛 (rather than 𝑘), dividing the space into manageable subspaces
without sacrificing completeness.

(2) Efficient unrealizability detection: An underlying solver that can quickly prove the unreal-
izability of a subspace is key to pruning entire branches, which avoids the need to further
partition the subspace.

(3) Independent parallel exploration: Decomposing based on instruction selection creates inde-
pendent subproblems, achieving near-linear parallel speedup that is difficult to achieve with
peephole-style approaches.

To implement these capabilities, we designed a program space representation that combines
component-based synthesis [15, 24] with program sketching [42, 43], embedding multiple in-
struction choices within each component. This representation enables our systematic hierarchical
partitioning. While our system uses a component-based synthesizer, our hierarchical partition-
ing framework is general and should work with any base synthesizer that can efficiently prove
unrealizability.

To evaluate our approach, we implement HieraSynth as a library and develop a prototype
super-optimizer for RISC-V Vector (RVV) [49]. We chose RVV because its flexible and complex
design offers rich optimization opportunities while posing significant challenges for both human
experts and automated tools. Our results demonstrate that HieraSynth substantially improves
on the 𝑘-vs-𝑛 trade-off, handling instruction sets of up to 𝑛 ≈ 700 while synthesizing programs
of 7–8 instructions. Specifically, we estimate that HieraSynth can handle up to 10.66× larger 𝑛
for a given 𝑘 , or up to 4.75× larger 𝑘 for a fixed 𝑛. This represents a significant leap in capability,
enabling the synthesis of complex vector kernels that were previously out of reach for complete
super-optimizers.

In summary, this paper makes the following contributions:

(1) A novel approach to component-based synthesis that compactly encodes large program
spaces by embedding choices within components, enabling hierarchical decomposition.

(2) A systematic adaptive approach to partition the program space on instruction set size 𝑛 rather
than program size 𝑘 , preserving completeness while enabling large-scale parallelism.

(3) A generic, parallel framework, HieraSynth, for building complete super-optimizers that can
be adapted to different ISAs and base synthesizers.

(4) The first complete super-optimizer for the flexible RISC-V vector ISA, demonstrating Hi-
eraSynth’s scalability, discovering optimizations that surpass human experts, and, in many
cases, proving their optimality.

The remainder of the paper is organized as follows: Section 2 provides an overview of Hi-
eraSynth, Section 3 discusses our program space representation and the parallel divide-and-
conquer approach, Section 4 describes further refinements to our algorithm, Section 5 formulates
the extended component-based synthesis algorithm for solving individual program spaces, Section
6 discusses adapting HieraSynth to build an RVV super-optimizer, and Section 7 presents em-
pirical evaluations demonstrating HieraSynth’s effectiveness in discovering low-cost and often
cost-optimal code for real-world applications.
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Fig. 1. The trade-off between maximum program size 𝑘 and instruction set size 𝑛 shown for a range of
super-optimization systems. Points marked × show the best-reported performance for prior tools, revealing
an inverse relationship between 𝑛 and the achievable 𝑘 , shown as the performance frontier (solid red line).
Circles show HieraSynth’s results on selected challenging benchmarks. By partitioning along the 𝑛 dimension,
HieraSynth surpasses the existing performance frontier, handling up to 10.66× larger 𝑛 for a given 𝑘 , or up to
4.75× larger 𝑘 for a fixed 𝑛. Additionally, HieraSynth’s focus on complete search allows it to prove that the
synthesized program is optimal; hatched markers denote proven optimality. Prior work: A: Brahma [15, 24],
B: Lens [37] on GA144 ISA, C: Massalin’s original super-optimizer [32], D: Barthe et al. [7], E: our base
synthesizer based on Brahma, F: Aquarium [18, 19] and PASSES [17], G: Lens on ARMv7, H: Souper [40], I:
Minotaur [29], J: Bansal and Aiken’s peephole super-optimizer [6].1

2 Overview

In this section, we first examine the trade-off between output program size (𝑘) and instruction set
size (𝑛) that governs existing complete super-optimizations. We then explain why decomposition
on 𝑘 can fail to guarantee optimality. Finally, we introduce our adaptive, hierarchical decomposition
on 𝑛, which makes finding good solutions (and often also proving them optimal) practical for larger
problems.

2.1 Background: The 𝑘-vs-𝑛 Trade-off

A complete super-optimizer’s goal is to find a program with the lowest possible cost for a given
specification, according to a cost model. It does this by systematically searching the entire space
of possible programs. This completeness preserves the path to finding the optimal solution, dis-
tinguishing them from non-exhaustive approaches (e.g., stochastic search) that may find good
solutions but cannot guarantee or prove optimality.

The program space of a super-optimization problem is primarily defined by program size (𝑘) and
instruction set size (𝑛). The resulting program space grows at least as Ω(𝑛𝑘 ), making exhaustive
exploration intractable as either parameter increases. Note that this is a rough estimate and does not
account for immediate constants or inter-instruction dependencies through variables or registers.

1Brahma restricts effective 𝑛 with expert-selected components, making the program space smaller than Ω (𝑛𝑘 ) . For Souper,
which adopts Brahma’s approach without expert-selected components, we observe 𝑘 = 6 with 𝑛 = 61. For Lens, we counted
the supported instruction set size from their artifact. Aqarium reported larger 𝑘 for OS kernel code using domain-specific
heuristics; we report Aqarium’s performance as a general program synthesizer. For other works, we estimated values
from their papers. We may overestimate, and the reported 𝑘 and 𝑛 may not be simultaneously achievable for some tools.
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Decades of research show a consistent pattern: as 𝑛 increases, the maximum feasible 𝑘 decreases
substantially. Fig. 1 illustrates this trade-off. A regression on prior work, based on the 𝑛𝑘 estimation,
reveals 𝑘 = 84.40/ln(𝑛) − 14.07 with 𝑅2 = 0.90. This strong relationship represents a practical
capability frontier for existing techniques.

HieraSynth substantially pushes this frontier. As shown in Fig. 1, for a fixed program size like
𝑘 = 6, HieraSynth can handle an ISA up to 10.66× larger than the empirical capability frontier.
For a fixed ISA size like 𝑛 ≈ 200, HieraSynth can synthesize a program up to 4.75× larger than the
estimated baseline capability. This significant improvement enables synthesizing complex vector
kernels, as demonstrated in Section 7.6.

2.2 Why Decomposition on 𝑘 Loses Optimality

To address scalability, most previous approaches use peephole-style optimizations [33], decompos-
ing based on output program size 𝑘 . These methods examine small instruction windows to find
local improvements, apply peephole rewrites, and iterate until a fixed point.

For example, Bansal and Aiken extract windows of 6 instructions and replace them with optimal
sequences of up to 3 instructions (𝑘 = 3 for the output program size), and Lens improves on
this approach through context-aware window decomposition, which leverages surrounding code as
preconditions and postconditions to relax correctness constraints and synthesize more efficient
code. While effective for many scenarios, these approaches sacrifice global completeness and cannot
synthesize programs requiring holistic, global changes. In Section 7.6, we demonstrate a vector
kernel where finding the optimal implementation requires synthesizing a program of 𝑘 ≥ 6 as a
single unit. The new algorithm invents a different representation of the datatypes, and such global
representational changes are beyond the reach of local peephole rewrites.

2.3 Our Idea: Decompose on 𝑛 to Preserve Optimality

The incompleteness of peephole-style optimization leads to a fundamental question: Is there an
alternative decomposition strategy that preserves completeness while enabling scalability? A
promising direction, noted by previous work, is to decompose on the instruction set size 𝑛, which
involves partitioning the set of available instructions. Crucially, this approach preserves the target
program size 𝑘 , avoiding the need to compose solutions from smaller synthesized programs.

For example, the PASSES system [17] explores decomposition on 𝑛 by statically splitting the
instruction set into predefined subsets and attempting to synthesize a program using only the
instructions from one subset. However, partitioning the instruction set this way loses candidate
programs that require instructions from different subsets simultaneously. To maintain completeness,
PASSES uses a fallback task that synthesizes with the entire instruction set, which could not scale
on harder problems. Although this approach improves scalability in many cases, it does not fully
solve the challenge of scaling to larger instruction sets of programs.

A more principled approach would partition the ISA in a way that creates a complete partition of
the original program space, ensuring no candidate programs are lost. To understand how to achieve
this, we analyze the program spaces of different tools in Fig. 1. For a program with large 𝑘 and 𝑛,
decomposing on 𝑛 creates subproblems with a smaller 𝑛 but the same large 𝑘 . This suggests that we
need a base synthesizer that excels at this type of problem. We find that Brahma is a competitive
choice, as it achieves the largest 𝑘 values among various existing tools. As shown in Fig. 2b, Brahma
takes a multiset of generic instructions (the standard library) augmented with problem-specific
instructions picked by experts. It uses these instructions as components and determines the optimal
way to order and wire them. This approach is powerful, but does not scale to large instruction sets
without expert guidance.
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fn f_sketch(a, b) {

// ?op chooses an operator

// from add/sub/popcnt/...

o1 = ?op(??, ??)

o2 = ?op(??, ??)

o3 = ?op(??, ??)

return o3

}

(a) Sketch

fn f_brahma(a, b) {

reorder_and_wire {

// stdlib

add, sub, and, ...

// user-extended

or, ...

}

}

(b) Brahma

fn f_hierasynth(a, b) {

// here k=3 and n=2

reorder_and_wire {

?op from {add/sub}

?op from {and/or}

?op from {and/or}

}

}

(c) HieraSynth

Fig. 2. The program space definition of HieraSynth combines the advantages of Sketch and Brahma. Sketch
offers fine-grained control over the programs by choosing the operators available to each instruction slot. In
contrast, Brahma uses a single instruction mix; its synthesizer reorders the set of instructions in all possible
ways and wires them to pass values. HieraSynth adopts Brahma’s ability to reorder the instructions "for
free" with Sketch’s per-slot choices. The per-slot choices let us gradually partition the program space into
smaller spaces as shown in Fig. 3.

To use Brahma as the base synthesizer, the core challenge is to automatically generate the
“expert-picked” instruction sets. A straightforward approach to creating a complete partition of the
program space is to enumerate every possible multiset of 𝑘 instructions from the full set of size 𝑛.
This is computationally infeasible, as it yields𝐶 (𝑛+𝑘 −1, 𝑘) distinct multisets. For a benchmark like
Min128 (𝑘 = 8, 𝑛 > 200), this would generate approximately 1014 subspaces, which is intractable
even with massive parallelization.

To address this combinatorial explosion, we augment Brahma with ideas from Sketch (Fig.
2a) and introduce a compact program space representation (Fig. 2c). Instead of working with
individual instructions, our synthesizer uses groups (subsets) of instructions as components. The
synthesizer’s task is to select one instruction from each component and then find the optimal wiring.
By enumerating combinations of these instruction groups rather than individual instructions, we
can reduce the number of subspaces to roughly 𝐶 ( 𝑛

𝑔
+ 𝑘 − 1, 𝑘), where 𝑔 is the average group size.

However, this introduces a dilemma: larger components create fewer subspaces, but each synthe-
sis task becomes harder. Conversely, using small components makes each task easier, but their sheer
number becomes overwhelming. The Min128 benchmark illustrates this trade-off: components
of size 40 prove too hard for the solver, while components of size 13 give an impractical 7.4 × 105

subspaces. Furthermore, synthesis difficulty correlates only loosely with the size of the program
space: some small spaces are very hard, while some large ones can be proven unrealizable in seconds.
Consequently, no fixed-size grouping can be optimal, and this necessitates a more dynamic and
adaptive strategy.

2.4 Hierarchical Parallel Divide-and-Conquer on 𝑛

The key idea of our approach is to gradually partition the program space, trying to find subspaces
that are of the right size and complexity for the base synthesizer to handle efficiently. Instead of a
fixed, one-level partition, we create a hierarchy and adaptively break down only the most difficult
parts of the program space.

We define the program space in terms of 𝑘 components, which are placeholders for instructions.
The synthesizer’s job is to select an instruction for each component and then determine their correct
and optimal ordering and wiring. Our method works by recursively partitioning the instruction
choice set for each component. The process progresses as follows and is illustrated in Fig. 3:

(1) Start and Partition. In the initial program space, each of the 𝑘 components can use any
instruction from the full set of size 𝑛. This initial program space is partitioned to create
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subproblems solvable in parallel, to exploit available parallel hardware. For example, the
initial problem with a 4-instruction set is partitioned into four smaller subspaces (labeled
1-4) in Fig. 3.

(2) Synthesize. Each subspace is assigned to a base synthesizer on a parallel worker, which returns
one of three outcomes:

(a) Unrealizable: The solver proves no valid program exists within the subspace. This allows
us to prune the entire corresponding search branch, eliminating potentially millions of
subproblems without further exploration (e.g., subspaces 1 and 4).

(b) Success: We get a valid solution and can continue searching within this promising subspace
for a lower-cost program. (e.g., continue exploring subspace 3 for lower cost). The search
is often accelerated by reusing internal lemmas in the solver.

(c) Timeout: The synthesis task is still too difficult and exceeds the time limit. The subspace is
added to a queue for further partitioning (e.g., subspace 2).

(3) Recurse Adaptively. Timed-out subspaces are recursively partitioned into even smaller prob-
lems. As shown in Fig. 3, the timed-out subspace 2 is split into 2.1 and 2.2. This process
continues until all branches of the search tree have been either solved or proven unrealizable.

{add,sub,and,or}

{add,sub,and,or}

{add,sub,and,or}
→

1. Unrealizable
{add,sub}

{add,sub}

{add,sub}

2. Timeout
{add,sub}

{add,sub}

{and,or}

3. Success
{add,sub}

{and,or}

{and,or}

4. Unrealizable
{and,or}

{and,or}

{and,or}

→

2.1 Unrealizable
{add,sub}

{add,sub}

{and}

2.2 Unrealizable
{add,sub}

{add,sub}

{or}

Fig. 3. Two steps of the hierarchical program space decomposition. We show three components, each with
four initial instruction choices, i.e., 𝑘 = 3, 𝑛 = 4. We start with the unpartitioned program space on the left. We
first divide it into four partitions, shown in the middle. Next, we run the base synthesizer on each subspace,
which can return three outcomes: Unrealizable means the solver has proved that no valid program exists in
that subspace, allowing pruning of the corresponding subspaces; Success means that a valid program was
found (and will be further optimized, not shown here); Timeout means that synthesis exceeded the time limit,
triggering further decomposition. In the second step, we partition the {and,or} subset within the timed-out
subspace into two new subsets.

By adapting to problem difficulty, this hierarchical approach resolves the dilemma of subproblem
size versus quantity. It starts with large, challenging problems and refines only those found to be
difficult. By aggressively pruning unrealizable branches (Section 3.3), we dramatically reduce the
number of subproblems that must be explored. For the Min128 benchmark, this method reduces the
number of explored subspaces from potentially millions to approximately 500, making the problem
tractable on a single server (see Section 7 for details).

To make our hierarchical approach effective, we had to address several practical considerations,
such as determining which subspaces to explore next and how to efficiently coordinate paral-
lel workers. We discuss our approach to task scheduling, efficient pruning, and managing the
exploration-exploitation trade-off in Sections 3 and 4.

It is worth noting that decomposition on 𝑛 is a general technique that could enhance other
synthesizers beyond our Brahma-inspired base synthesizer. The core principle, that is, a hierarchical
decomposition of a large program space into manageable subspaces tackled by a base synthesizer
to find optimal solutions or prove unrealizability, is a general methodology. The base synthesizer,
program space representation, and unrealizability prover are, in principle, pluggable. This allows
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HieraSynth to be adapted to other domains and benefit from orthogonal optimizations in other
works. For example, one could use a SyGuS [5] base synthesizer, hierarchically decompose the
production rule choices, and prove unrealizability using dedicated approaches [20, 27]. The rest of
the paper realizes our ideas: a partitionable program space representation (Section 3.1), a parallel
scheduler with pruning (Section 3.3 and 3.4), and two optimizations to the parallel solving technique
(Section 4).

3 Parallel Divide-and-Conquer

In this section, we present our approach to breaking the 𝑘-vs-𝑛 trade-off. We begin with our program
space representation that enables hierarchical decomposition on instruction set size (𝑛). We then
present our parallel divide-and-conquer algorithm and extend it for optimal synthesis.

3.1 Program Space Representation

As discussed in Section 2, our key innovation is to decompose the search based on instruction set
size (𝑛) rather than program size (𝑘). This requires a program space representation that enables
systematic partitioning while preserving completeness.

In our representation, a program space consists of 𝑘 components, each able to choose from a
set of instructions. These instructions are organized into a tree structure, where the leaf nodes
are individual instructions like + and -. Related instructions are grouped into sets, annotated
with sequence numbers (e.g., {+,-}!2) for partitioning priority. The reorder_and_wire notation
indicates that components may be reordered and wired into a program by the synthesizer.

fn space(a, b) {

reorder_and_wire {

3 * {{+,-}!2,{*,/}!3}!1

}

}

(a) Program space with 𝑘 = 3
and 𝑛 = 4 (operators)

fn f(a, b) {

r1 = a + b

r2 = r1 * b

return r2 - a

}

(b) One concrete pro-
gram from (a)

fn subspace_n(a, b) {

reorder_and_wire {

n * {+,-}!2 // n is 0~3

(3-n) * {*,/}!3

}

}

(c) Lossless subspace family
parameterized by 𝑛

fn subspace_2_1(a, b) {

reorder_and_wire {

+, -, {*,/}!3

}

}

(d) Refinement of the 𝑛 =
2 subspace

Fig. 4. Lossless hierarchical partitioning of a program space with 𝑘 = 3 and 𝑛 = 4. (a) Three components; each
slot chooses from {+,-,*,/}. (b) One concrete program in (a). (c) Family subspace_n (𝑛 ∈ {0, 1, 2, 3}): exactly
𝑛 slots are restricted to {+,-}, and the remaining 3 − 𝑛 to {*,/}; the children partition the parent (lossless).
(d) Refinement of the 𝑛 = 2 case by further partitioning the {+,-} choices; one child subspace is shown.

Our representation enables systematic partitioning of the program space while preserving
completeness. To illustrate, consider the example in Fig. 4, where we have a program space with𝑘 = 3
components, each able to select from 𝑛 = 4 operators {+,-,*,/}. We partition this space by first
splitting on the choice node with the smallest sequence number (here, !1). This creates subspaces
where components choose from different subsets of instructions. In our example, subspace_n
represents a parameterized family of subspaces where 𝑛 components choose from {+,-} and
the remaining 3 − 𝑛 components choose from {*,/}. We can further partition these subspaces
for finer-grained exploration. For instance, subspace_2_1 shows a subspace where {+,-}!2 in
subspace_2 is further split into one + and one -. As each program in the original space appears
in some subspaces, our partitioning scheme is lossless, preserving completeness. This hierarchical
approach addresses the combinatorial explosion that would result from naively enumerating all
possible combinations of instructions. Instead of generating 𝐶 (𝑛 + 𝑘 − 1, 𝑘) subspaces immediately,
we progressively refine the partitioning, solve subspaces in parallel, prune unrealizable spaces, and
focus computational resources on promising areas of the search space.
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3.2 Counterexample-Guided Inductive Synthesis

Before presenting our parallel algorithm, we briefly describe the Counterexample-Guided Inductive
Synthesis (CEGIS) framework [42, 43] that serves as the base synthesizer for subspaces. CEGIS
operates through an iterative loop with two main components:

(1) Proposer : Generates candidate programs that satisfy the specification on a known set of inputs.
We implement this by encoding the program space and specification into SMT constraints.
Our encoding, inspired by Brahma, will be discussed in Section 5.

(2) Challenger : Checks whether the proposed program satisfies the specification. If not, it gener-
ates counterexamples (inputs where the program violates the specification) and adds them to
the known input set for the next iteration.

This iterative process continues until either:
(1) Success: The challenger confirms that the candidate satisfies the specification for all inputs.
(2) Unrealizable: The proposer proves that no program in the space satisfies the specification on

the known inputs.
(3) Timeout: A predefined timeout is reached.

3.3 Parallel Divide-and-Conquer Algorithm

With our hierarchically partitionable program space representation and the base synthesizer
established, we now present our parallel divide-and-conquer algorithm. This algorithm coordinates
multiple base synthesizers (workers) to explore different subspaces simultaneously while avoiding
combinatorial explosion through effective pruning strategies.

Algorithm 1: Global scheduler. Poll work-
ers, prune unrealizable branches, and start
new tasks; return the first solution or con-
clude that the space is unrealizable.

1 results← CheckRunningNodes();
2 foreach node,result← results do
3 match result do
4 case unrealizable→ Prune(node);
5 case success (prog)→ return prog;
6 case timeout→ DoNothing();
7 end
8 end
9 TryStartNodes();

10 if #running tasks = 0 then
11 if no leaf has timed out then return unrealizable;
12 return failed;
13 end

Our hierarchical partitioning forms a tree of
subspaces with two fundamental properties:

(1) A child space is a subset of its parent.
(2) The union of all immediate child spaces

equals the parent space.
These properties enable the following prun-

ing strategies:
(1) Downward pruning: When a parent space

is proven unrealizable, all its child spaces
are also unrealizable and can therefore
be pruned without exploration.

(2) Upward pruning: When all child spaces
of a parent are proven unrealizable, the
parent space is also unrealizable.

These pruning rules allow us to eliminate
large portions of the search space efficiently.
Importantly, we leverage an asymmetry in the
synthesis process: proving unrealizability is of-
ten easier than finding a program that satisfies
the specification. The intuition is that proving unrealizability requires only identifying a small set
of counterexamples where no program in the program space can meet the specification on them
simultaneously, and we can control the system to generate smaller counterexamples first (see the
two-track synthesis in Section 4.1). In contrast, finding a program involves finding a large set of
inputs to narrow down the program space into the specific program that matches the specification,
where the synthesis gets harder as the solver context grows with large counterexamples. This
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difference enables us to quickly prune large branches of the search tree by ruling out unrealizable
branches without exhaustive enumeration.

Algorithm 2: TryStartNodes algorithm
for task prioritization, splitting, and
spawning.
Data: 𝑞: priority search queue of nodes, prioritized

by ⟨Depth, Priority⟩ lexicographically
Data: 𝑞𝑠 : priority search queue of nodes to split

1 while 𝑞 is empty and 𝑞𝑠 is not empty do
2 node← PopTop(𝑞𝑠);
3 if NotPruned(node) then

SplitAndEnqueueChildren(node, 𝑞, 𝑞𝑠);
4 end
5 while 𝑞 is not empty and #running tasks < #cores do
6 node←PopTop(𝑞);
7 if NotPruned(node) then Start(node);
8 end

Algorithm 3: Global scheduler loop
body for optimal program search.
Data: bestProg: initialized to empty.
Data: bestCost: initialized to∞ (or the reference

cost).
1 responses← CheckRunningNodes();
2 foreach node,response← responses do
3 match response do
4 case unrealizable→ Prune(node);
5 case success (prog)→ UpdateBestProg(prog);
6 case timeout | gotNewCex→ DoNothing();
7 end
8 if node is running then

SyncCurrentCost(node);
9 end

10 TryStartNodes();
11 if #running tasks = 0 then
12 match (#timed out leaves, bestProg) do
13 case (0, empty)→ return unrealizable;
14 case (_, empty)→ return failed;
15 case (0, prog)→ return optimal (prog);
16 case (_, prog)→ return maybeOptimal (prog);
17 end
18 end

Our parallel algorithm uses a global scheduler
to orchestrate the synthesis process, as shown in
Algorithm 1. It runs in a loop, spawns workers
for subspaces, periodically checks their results,
and manages partition and exploration strategy.
It prunes a subspace when a worker confirms its
unrealizability. Selecting the next program space
to explore is handled by Algorithm 2, which
maintains two priority queues:

(1) 𝑞: Contains program spaces ready for ex-
ploration, prioritized first by depth in the
tree and then by a random priority.

(2) 𝑞𝑠 : Contains program spaces that need to
be split into smaller subspaces.

When no nodes are ready for exploration (𝑞 is
empty), the algorithm takes nodes from 𝑞𝑠 and
splits them, adding their children to 𝑞. Then it
selects nodes from 𝑞 to start new workers.

During synthesis, if any solution is found, this
algorithm terminates and reports the solution.
If every program space is proven unrealizable,
the algorithm concludes the original space is
unrealizable. If any leaf nodes have timed out,
we report a synthesis failure but cannot guaran-
tee unrealizability. For applications requiring a
definitive unrealizability proof, we can disable
timeouts for leaf nodes, though this may signif-
icantly increase runtime.

3.4 Search for Optimal Programs

In practice, we typically seek not just any valid
program but the optimal one according to a cost
model, which assigns numerical costs to pro-
grams, with lower values indicating better pro-
grams. Common costs include instruction count
or estimated cycles.

We extend our scheduler in Algorithm 3 to
maintain the best-known cost, initially set to
infinity or the reference cost. UpdateBestProg
compares the cost of the program with the cur-
rent best cost and updates the best program and cost if the new program has a lower cost. This
cost serves as a dynamic upper bound that tightens throughout the search process. To effectively
propagate cost information to running workers, we modify workers to also report to the scheduler
by emitting a gotNewCex whenever a new counterexample is generated during CEGIS. These
reporting events create natural synchronization points to transfer the current best cost to the
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worker. At these points, the proposer is in a standby state, which allows us to inject additional cost
constraints without disrupting the running solver.

Another change not shown in Algorithm 3 is to the worker behavior. Instead of terminating
when a solution is found, the worker continues to refine the solution with lower costs. It awaits the
current cost from the scheduler, injects cost constraints, and solves incrementally. In this way, it
leverages the lemmas learned in synthesizing the earlier programs to get improved results faster.

Our approach provides clear optimality guarantees: if all program spaces have been explored with
no running tasks remaining and no leaf nodes timed out, we can guarantee that the best-known
solution is optimal. In cases where some leaves time out, we report the best solution but cannot
guarantee optimality. If a definitive optimality guarantee is desired, we can disable leaf timeouts.

4 Optimizations for Parallel Solving

Fast track
synth

Generalization

Slow track
synth Shutdown

Fig. 5. Worker state machine.
Green, solid arrows are transi-
tions on success. Red arrows are
transitions on failure. Fast track

While our basic parallel divide-and-conquer approach already offers
significant advantages and is the key to breaking the trade-off be-
tween instruction set size (𝑛) and program size (𝑘) by decomposing
on 𝑛, we can further enhance its efficiency through additional opti-
mizations. In this section, we introduce two key optimizations that
improve the performance of our approach on complex synthesis
tasks: two-track synthesis and biased search.

4.1 Two-Track Synthesis

As described earlier, we time out workers to avoid wasting resources
on program spaces unlikely to yield results in a reasonable amount
of time. However, this approach risks premature termination of
promising tasks. To mitigate this, we use a two-track approach
to identify promising spaces and adjust timeouts accordingly. The
worker’s state machine under this approach is illustrated in Fig. 5.

The key insight behind our two-track approach is that varying
the verification strictness allows quick identification of promising
program spaces before dedicating additional resources. Instead of using a single challenger that
performs rigid verification to ensure the equivalence between the specification and the proposed
program, we enhance our CEGIS implementation with two classes of challengers:

(1) Easy challengers: These operate with restricted data ranges or smaller bit-widths. The syn-
thesis on these restricted inputs will be faster, but the result is not guaranteed to be correct
on all possible inputs. However, failing to synthesize a program against easy challengers
indicates that the program space is unrealizable and can be pruned.

(2) Hard challengers: These utilize full data ranges and bit-widths. A program that passes all hard
challengers is guaranteed to satisfy the complete specification.

Our synthesis proceeds through three phases using these challengers:
(1) Fast-track synthesis: The worker initially synthesizes using only easy challengers. This phase

quickly identifies promising program spaces while filtering out obviously unrealizable ones.
(2) Generalization: If fast-track synthesis succeeds, instead of directly starting to use hard chal-

lengers to generate more counterexamples, we attempt to generalize the fast-track result to a
smaller program space. For example, we may use a sketch (not component-based) program
with the same structure as the fast-track synthesis result but with symbolic immediates.
We then synthesize using this smaller program space with the hard challengers, which is
typically faster than synthesis with the full program space.
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(3) Slow-track synthesis: If generalization fails, we fall back to synthesis with the original program
space and hard challengers. This guarantees the completeness of our approach.

To guarantee soundness, we never accept a program until it passes all hard challengers. After
the fast track successfully finds a solution, we deem this program space as promising and increase
its timeout to allocate more resources for the generalization and slow-track phases.

4.2 Biased Search

Algorithm 4: TryStartNodes algorithm with
biased search, splitting omitted for brevity
Data: 𝑝 : probability for biased search
Data: 𝑞: priority search queue of nodes, prioritized by

⟨Depth, Random priority⟩ lexicographically
Data: 𝑞𝑝 : priority search queue of nodes, prioritized by

⟨Distance to the nearest fast-track-successful
ancestor, Depth, Random priority⟩ lexicographically

1 while 𝑞 is not empty and #running tasks < #cores do
2 𝑡 ← UniformRandVar(0, 1);
3 if 𝑡 < 𝑝 then node← PopTop(𝑞𝑝); Remove(𝑞, node);
4 else node← PopTop(𝑞); Remove(𝑞𝑝 , node);
5 if NotPruned(node) then Start(node);
6 end

While the two-track synthesis approach
helps identify promising program spaces,
we also use this information to guide par-
allel exploration. This insight leads to our
biased search strategy, which prioritizes the
children of promising program spaces.

Algorithm 4 presents our enhanced task
selection strategy with biased search. Here,
the algorithm maintains an additional
queue 𝑞𝑝 prioritizing nodes first by the dis-
tance to the nearest ancestor that success-
fully passed the fast-track. If no successful
ancestor is available, we treat the distance
as infinity. When selecting the next task to
start, we generate a random value 𝑡 , and
with probability 𝑝 , we select from 𝑞𝑝 (bi-
ased search); otherwise, we select from the standard queue 𝑞. This probabilistic approach effectively
balances exploitation (exploring more promising program spaces) with exploration (exploring
diverse program spaces). By prioritizing children of fast-track successful nodes, we focus computa-
tional resources on the most promising search spaces and accelerate the discovery of solutions.

5 Component-Based Synthesis with Choices in Components

In this section, we describe the base synthesizer constraint encoding for individual program spaces.
Our approach extends Brahma’s formalism [24], reusing its concepts of I/O variables, locations, and
dataflow relations, while introducing instruction choices within each component. This introduces
several new constraints and modifies some existing constraints within the Brahma framework.

5.1 Notations for Program Space Representation

We first present the formal representation of our component-based synthesis with choices. A
synthesis problem consists of a specification and a program space. Following Brahma, a program’s
specification is a tuple ⟨®𝐼 , ®𝑂,𝜙spec (®𝐼 , ®𝑂)⟩, where:

(1) ®𝐼 and ®𝑂 are tuples of input and output variables of the program,
(2) 𝜙spec (®𝐼 , ®𝑂) is an expression that specifies the desired input-output relationship.
We extend the program space to support choices in components. A program space is specified as:

⟨{⟨𝐶𝑖 , 𝑆𝑖⟩ | 𝑖 = 1, · · · , 𝑁 }, 𝑆⟩
where 𝐶𝑖 = {⟨ ®𝐼𝑖, 𝑗 , ®𝑂𝑖, 𝑗 , 𝜙𝑖, 𝑗 ( ®𝐼𝑖, 𝑗 , ®𝑂𝑖, 𝑗 )⟩ | 𝑗 = 0, · · · , 𝑀𝑖 − 1}

𝑆𝑖 = ⟨𝐸𝑖 , 𝑃𝑖 , 𝑁𝐼 ,𝑖 , 𝑁𝑂,𝑖 , ®𝐿𝐼 ,𝑖 , ®𝐿𝑂,𝑖⟩
𝑆 = ⟨ ®𝐿𝐼 , ®𝐿𝑂 ⟩
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This representation has two main parts:
(1) Instruction choices: 𝐶𝑖 is the set of possible instructions for the 𝑖-th component. Each compo-

nent can have 𝑀𝑖 different instruction choices, where:
• ®𝐼𝑖, 𝑗 and ®𝑂𝑖, 𝑗 are the I/O variables for instruction choice 𝑗 (intermediate values),
• 𝜙𝑖, 𝑗 specifies the relationship between inputs and outputs for this instruction.
• Different instructions within a component may use different numbers of I/O variables.

(2) Structural variables: 𝑆𝑖 and 𝑆 represent what is being synthesized:
• 𝐸𝑖 is a Boolean that indicates whether component 𝑖 is enabled
• 𝑃𝑖 is an integer that selects which instruction to use for component 𝑖
• 𝑁𝐼 ,𝑖 and 𝑁𝑂,𝑖 are the number of inputs/outputs for the selected instruction
• ®𝐿𝐼 ,𝑖 and ®𝐿𝑂,𝑖 are “location” values that encode how components connect to form a directed

acyclic graph (DAG)
Intuitively, the structural variables define how we reorder and connect the instructions to form

a program, and what choices we make for each component. The location values 𝐿 constrain the
connections between components, and two intermediate values at the same location must be
the same. 𝑃 and 𝑁 denote the specific instruction choice for each component. The enabled bit 𝐸
accommodates cases where some components cannot be connected to others due to ISA constraints.

For notational clarity, we use ®𝑉 𝑘 for the element of ®𝑉 at index 𝑘 (starting from 0). When element
order is irrelevant, we use tuples as sets. We use 𝜃 ( ®𝑉 ) for the number of elements in a tuple or set.

We also introduce these intermediate notations:
• C: all the choice sets in all the components (all 𝐶𝑖 ).
• S: all the structural variables in the set of all 𝑆𝑖 along with 𝑆 ,
• I: all the inputs to the choices (union of all ®𝐼𝑖, 𝑗 ),
• O: all the outputs of the choices (union of all ®𝑂𝑖, 𝑗 ),
• U: all the uses in the program (I along with ®𝑂),
• D: all the definitions in the program (O along with ®𝐼 )

We also define a location function 𝐿 that maps fromU ∪D to integers:

𝐿(®𝐼𝑘 ) = ®𝐿𝐼
𝑘
, 𝐿( ®𝑂𝑘 ) = ®𝐿𝑂

𝑘
, 𝐿( ®𝐼𝑖, 𝑗

𝑘 ) = ®𝐿𝐼 ,𝑖
𝑘
, 𝐿( ®𝑂𝑖, 𝑗

𝑘 ) = ®𝐿𝑂,𝑖

𝑘

This function is well defined when 𝜃 ( ®𝐿𝐼 ) = 𝜃 (®𝐼 ), 𝜃 ( ®𝐿𝑂 ) = 𝜃 ( ®𝑂), 𝜃 ( ®𝐿𝐼 ,𝑖 ) = max𝑗𝜃 ( ®𝐼𝑖, 𝑗 ), and 𝜃 ( ®𝐿𝑂,𝑖 ) =
max𝑗𝜃 ( ®𝑂𝑖, 𝑗 ). We will assume that 𝐿 is well-defined throughout our discussion.

5.2 Synthesis Constraints

The synthesis constraints with our program space representation can be described as:

∃S.𝜙wfp (S) ∧ (∀®𝐼 .∀ ®𝑂.∃I,∃O .𝜙conn (S,D,U) ∧ 𝜙lib (I,O) ∧ 𝜙spec (®𝐼 , ®𝑂))
This formula states that our synthesis problem is to find the structural variables for the program
space such that for all I/O pairs, a set of intermediate values exists to fulfill the constraints.

5.2.1 Encoding Well-Formed Programs. We now establish the constraints 𝜙wfp for the structural
variables S to be valid. A valid assignment to these variables leads to a well-formed program in
static single-assignment (SSA) form within our program space.

First, we need to assign integers to locations in a principled way. Only equality relationships
matter for location values, so we can choose a canonical assignment for them. The canonicity
constraint ensures the following properties and simplifies subsequent constraints:
• Locations are assigned non-negative integers smaller than the total number of definitions.
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• Program inputs receive the smallest possible numbers.
• Outputs of a component receive consecutive location values.

𝜙cano =
∧

𝑣∈D∪U
0 ≤ 𝐿(𝑣) < 𝜃 (D) ∧

∧
0≤𝑘<𝜃 (®𝐼 )

𝐿(®𝐼𝑘 ) = 𝑘 ∧
∧

0≤𝑖<𝜃 (C),
0≤ 𝑗<𝜃 (𝐶𝑖 ),

0≤𝑘<𝜃 ( ®𝑂𝑖,𝑗 )−1

𝐿( ®𝑂𝑖, 𝑗

𝑘 ) = 𝐿( ®𝑂𝑖, 𝑗

𝑘+1) − 1

The canonicity constraint does not prevent multiple definitions from sharing the same location,
which would violate SSA form. Therefore, we need a consistency constraint:

𝜙cons =
∧

𝑥,𝑦∈D,𝑥≠𝑦

𝐿(𝑥) ≠ 𝐿(𝑦)

In a well-formed program, variables must be defined before they are used, and the data depen-
dency graph must be a DAG. Following our canonicity constraint, we ensure acyclicity by requiring
that the location values for definitions are always greater than those for the uses in each component:

𝜙acyc =
∧

0≤𝑖<𝜃 (C),0≤ 𝑗<𝜃 (𝐶𝑖 ),𝑥∈ ®𝐼𝑖,𝑗 ,𝑦∈ ®𝑂𝑖,𝑗

𝐿(𝑥) < 𝐿(𝑦)

In each component, we ensure choosing a valid choice, encoded by the choice constraint:

𝜙choi =
∧

0≤𝑖<𝜃 (C)
0 ≤ 𝑃𝑖 < 𝜃 (𝐶𝑖 ) ∧ 𝑁𝐼 ,𝑖 = 𝜃 ( ®𝐼𝑖,𝑃𝑖 ) ∧ 𝑁𝑂,𝑖 = 𝜃 ( ®𝑂𝑖,𝑃𝑖 )

Another thing to note is that each component can choose from operators with different numbers
of inputs and outputs and can be disabled. This means we must ensure that all uses only reference
valid, enabled outputs. Here, the antecedent states that the use 𝑥 from an enabled component uses
an output of the component𝐶𝑑 , and the consequent states that it must only use valid outputs of𝐶𝑑 .

𝜙valid =
∧

0≤𝑢,𝑑<𝜃 (C),𝑥∈ ®𝐼𝑢,𝑃𝑢

(𝐸𝑢 ∧ ®𝐿𝑂,𝑑

0 ≤ 𝐿(𝑥) < ®𝐿𝑂,𝑑

0 + 𝜃 (𝐿𝑂,𝑑 )) ⇒ (𝐸𝑑 ∧ 𝐿(𝑥) − ®𝐿𝑂,𝑑

0
< 𝑁𝑂,𝑑 )

The well-formed constraint can then be defined as the conjunction of the five conditions:

𝜙wfp = 𝜙cano ∧ 𝜙cons ∧ 𝜙acyc ∧ 𝜙choi ∧ 𝜙valid

5.2.2 Encoding Dataflow Semantics. For dataflow semantics with choices, we only constrain values
involved in execution based on structural variables. The input-output relation for the instructions
should only apply when the instruction is chosen and the component is enabled:

𝜙lib =
∧

0≤𝑖<𝜃 (C),0≤ 𝑗<𝜃 (𝐶𝑖 )
(𝐸𝑖 ∧ 𝑗 = 𝑃𝑖 ) ⇒ 𝜙𝑖, 𝑗 ( ®𝐼𝑖, 𝑗 , ®𝑂𝑖, 𝑗 )

We also need a constraint modeling connections between components such that the I/O variables
should be equal when the locations are equal, the components are enabled, and the I/O variables
are associated with chosen instructions.

𝜙conn =
∧

𝑢∈U,𝑑∈D
(chosen(𝑢) ∧ chosen(𝑑) ∧ 𝐿(𝑢) = 𝐿(𝑑)) ⇒ 𝑢 = 𝑑 where

chosen(𝑥) = 𝑥 ∈ ®𝐼 ∨ 𝑥 ∈ ®𝑂 ∨
∨

0≤𝑖<𝜃 (C)
(𝐸𝑖 ∧ (𝑥 ∈ ®𝐼𝑖,𝑃𝑖 ∨ 𝑥 ∈ ®𝑂𝑖,𝑃𝑖 ))
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5.3 Solving the Constraint

Putting the constraints together, we get our synthesis constraint:

∃S.𝜙wfp (S) ∧ (∀®𝐼 .∀ ®𝑂.∃I .∃O .𝜙conn (S,D,U) ∧ 𝜙lib (I,O) ∧ 𝜙spec (®𝐼 , ®𝑂))
This constraint has nested quantifiers and cannot be solved efficiently with modern solvers.

While Brahma effectively applies the CEGIS algorithm [43] with angelic variables to address
the problem, it formulates the problem as a single, monolithic constraint system. The monolithic
nature of this formulation makes it difficult to support composable features like sub-procedures,
which can be used to implement techniques like context-aware window decomposition [37] and
user-introduced pseudo-instructions. We address this limitation by reformulating the construction
of the synthesis constraint as an angelic programming [9] problem, which is inherently composable.

5.3.1 Finite Synthesizer with Angelic Programming. To handle the nested quantifiers, we first
skolemize the constraint. This standard logical transformation effectively replaces the existentially-
quantified intermediates I and O with functions over the universally-quantified program input-
s/outputs ®𝐼 and ®𝑂 . For a finite set of I/O pairs (concrete instantiations of ®𝐼 and ®𝑂), we can further
replace the universal quantifier with a conjunction:

∃S.𝜙wfp (S) ∧ (∃I, ∃O .
∧
®𝐼 , ®𝑂
(𝜙conn (S,D(®𝐼 , ®𝑂),U(®𝐼 , ®𝑂)) ∧ 𝜙lib (I(®𝐼 , ®𝑂),O(®𝐼 , ®𝑂)) ∧ 𝜙spec (®𝐼 , ®𝑂)))

interpret(input):

output,intermediate = fresh_symbolic_variables()

assert(phi(input,output,structural,intermediate))

return output

Fig. 6. Transforming a constraint into an angelic
interpreter with fresh variables and assertions

For each I/O pair, we can now generate con-
straints as a relation 𝜙 over ®𝐼 , ®𝑂 , S, and intermedi-
ate variables (I(®𝐼 , ®𝑂) and O(®𝐼 , ®𝑂)). We view this
as an angelic programming problem [9]. As shown
in Fig. 6, 𝜙 can be transformed into an angelic in-
terpreter that produces symbolic outputs for given
inputs, generates fresh variables, and asserts the
constraints. Crucially, each call to the interpreter
generates a distinct set of fresh variables, ensuring
that they are not interfering with each other. Here, the angelic programming and constraints can be
managed as monadic effects in HieraSynth’s host library Grisette [30], and the interpreter can
be written as a conventional monadic interpreter and used anywhere an interpreter is expected.

5.3.2 Composable Synthesis with Angelic Programming. The primary motivation for using angelic
programming is to provide a clean and composable interface for super-optimization. This allows
us to treat both the concrete program semantics (which is naturally defined as interpreters) and
symbolic program space semantics (which become angelic interpreters) under a unified interpreter
abstraction. The uniformity is crucial for seamlessly supporting features like sub-procedures. We
can now offer a composable interface where both program specifications and instruction semantics
are expressed as interpreters. The monad M encapsulates the effects, such as generating fresh
angelic variables and asserting constraints:

interpret(𝑠𝑝𝑎𝑐𝑒) ≔ ®𝐼 ↦→ 𝑀 ( ®𝑂) interpret(𝑖𝑛𝑠𝑡𝑖, 𝑗 ) ≔ ®𝐼𝑖, 𝑗 ↦→ 𝑀 ( ®𝑂𝑖, 𝑗 )
This allows concrete programs and component-based program spaces to be mixed freely, as all are

implemented as composable monadic interpreters. Fig. 7 illustrates two applications: context-aware
window decomposition and user-defined pseudo-instructions.

In Fig. 7a, a program fragment under super-optimization can be part of a larger program. The
code can leverage the assumptions about its calling context and be simplified accordingly—this is
the context-aware window decomposition idea from Lens [37]. We will show an example of this
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int32 programSpace(int32 a, int32 b) {

reorder_and_wire { ... }

}

int32 program(int32 a, int32 b) {

int32 add = a + b;

int32 mul = a * b;

return programSpace(add, mul);

}

(a) Program space as subroutine

int32 pseudoMulAdd(int32 a, int32 b) {

return a + a * b;

}

int32 programSpace(int32 a, int32 b) {

reorder_and_wire {

2 * {..., pseudoMulAdd, ...}

}

}

(b) Concrete pseudo-instruction as subroutine

Fig. 7. Subroutines enable composable super-optimization. (a) A prologue computes program space inputs;
synthesis fills the callee. (b) A concrete pseudo-instruction (e.g., pseudoMulAdd) is called from the space.

in Section 7.6. Another application (Fig. 7b) is using concrete subroutines as pseudo-instructions.
When users identify useful code patterns, they can provide them as subroutines, potentially reducing
the 𝑘 required to synthesize an optimization. We will discuss this further in Section 6.3.

6 Adapting HieraSynth to RISC-V Vector Code Super-Optimization

In this section, we describe how we adapt HieraSynth to build a RISC-V Vector (RVV) code
super-optimizer. We implement HieraSynth as a reusable library with the Grisette [30] symbolic
evaluation framework, enabling super-optimizer developers to obtain a program synthesizer simply
by defining the instruction semantics with standard monadic Haskell code. The main challenge is
adapting the RVV type system to our framework and making it work with our two-track approach
to synthesis. As types in conventional SIMD ISAs like AVX or NEON are typically simpler, we
believe that our approach could extend to these ISAs with simplifications. We will also describe
how we use sub-procedures to further scale our synthesizer, and briefly outline the approach we
use to over-approximate a program space from a reference implementation.

6.1 RISC-V Vectors

The RISC-V “V” extension introduces a flexible vector programming model with distinctive features:
• Scalable vector length (VLEN): Hardware vendors can implement different vector register

lengths (e.g., SiFive X280 [3] uses 512-bit registers, while P670 [4] is 128 bits). RVV code is
usually (and is encouraged to) written in a portable, architecture-agnostic way.
• Vector grouping: Instructions can operate across multiple registers through the “vector group

multiplier” (LMUL) parameter. For example, vuint8m2_t represents an 8-bit unsigned vector
spanning two registers. RVV also allows vectors to occupy register fractions using fractional
LMULs. Choosing different LMULs affects performance: on SiFive X280 with a 256-bit vector
ALU but 512-bit VLEN, using LMUL=1/2 can halve execution time versus LMUL=1.
• Selective operations: Most RVV instructions support masking and configuring to process

only the first vl elements. Elements outside the mask or exceeding vl can be configured to
“agnostic” (undefined values) or “undisturbed” (preserved values) modes.

These features provide fine-grained control and facilitate optimizations. However, they also
increase programming complexity for both developers and super-optimizers as there are numerous
instruction and configuration choices to make.

6.2 RVV Types and Two-Track Synthesis

For two-track synthesis (described in Section 4.1), the apparent approach is using smaller VLEN for
easy challengers. However, this is not always efficient since the minimum 128-bit VLEN specified
by RVV remains challenging for solvers, especially with complex non-linear operations.
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To make fast-track more effective, we further reduce bit-width to hypothetical machines with a
modified RVV type system. Instead of using element width for vectors (the 8 in vint8m1_t) or bit-
width for scalars, we represent bit-width as ratios between bit-width and XLEN configuration (scalar
register width). For example, assume 64-bit machines, vint8m1_t will become vint{1/8}m1_t,
while uint64_t will become uint{1}. This enables systematic machine configuration scaling
with reasonable semantics, using the ratio as an invariant. Programs with these types become
polymorphic across bit-width reductions: a program running with 32-bit data on a 64-bit machine
with 128-bit vectors can also process 8-bit data on a hypothetical 16-bit machine with 32-bit vectors.

As our super-optimizer uses reference code as specification, scaling does not always work when
magic numbers assume specific bit-widths. We mitigate this by providing multiple scaling models:
• Scale the reference program with reduced bit semantics.
• Only scale the inputs/outputs with zero/sign extension and truncation.
• Use only real 64-bit configurations (as a last resort).

The choice of scaling mode is currently left to users, and we use reduced bit semantics whenever
possible. Automatic mode detection or parallel searching with multiple modes remains future work.

6.3 Sub-Procedures

As shown in Section 5.3.2, reformulating synthesis constraints as angelic programming enables
sub-procedures. Our RVV synthesizer leverages this to help synthesize more complex programs.

As a general super-optimizer, we refrain from adding many pseudo-instructions, as the benefit
is unclear. We include some scalar pseudo-instructions recommended by RISC-V specification
and recognized by assemblers. We additionally add one type of vector pseudo-intrinsic: mask
manipulation via regular vector instructions, which we found very common and general. One
example of such pseudo-instruction is shown in Fig. 8. We believe that it is useful for users to
develop their own domain-specific pseudo-instructions to further aid synthesis.

6.4 Program Space Inference

1vbool64_t vadd_mm(vbool64_t a, vbool64_t b) {

2 size_t vl = __riscv_vsetvlmax_e8mf8();

3 vuint8mf8_t av =

4 __riscv_vlmul_trunc_u8mf8(__riscv_vreinterpret_u8m1(a));

5 vuint8mf8_t bv =

6 __riscv_vlmul_trunc_u8mf8(__riscv_vreinterpret_u8m1(b));

7 vuint8mf8_t rv = __riscv_vadd(av, bv, vl);

8 return __riscv_vreinterpret_b64(__riscv_vlmul_ext_u8m1(rv));

9}

Fig. 8. Pseudo-intrinsic using reduced LMUL and vadd to shift
masks. This is the only vector pseudo-intrinsic we include in
our experiments.

Though our system can handle large sets
of choices, it is not beneficial to add all of
them to the program space when doing
the synthesis. We adopt simple heuris-
tics to infer a program space from the
reference programs: we collect all types
and instructions present in the reference
program and add all potentially relevant
instructions to the choices.

For example, if multiple vector types
are used, we introduce all possible conver-
sion/narrowing/widening instructions. If
we see multiplication, we add multiplication-related instructions. In contrast, we will not add
multiplication to the choices when only linear arithmetic is present. Despite not using all instruc-
tions for an arbitrary program, we ensure all possibly useful instructions are added to the best of
our knowledge. The resulting program space is still comprehensive and allows us to synthesize
interesting optimizations, as shown in Section 7.

For the inferred instruction set, we use simple heuristics to group similar instructions together
as this may give a better SMT encoding by enhancing term sharing. Finding a better methodology
for grouping is left for future work.
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7 Evaluation

We evaluate HieraSynth to understand the following research questions.
RQ1 How well does HieraSynth help scaling a base synthesizer?
RQ2 How effectively can HieraSynth synthesize and prove optimality for vector programs?
RQ3 Can HieraSynth overcome the fundamental trade-off between output program size 𝑘 and

instruction set size 𝑛?
RQ4 How effective is HieraSynth’s two-track synthesis approach?
RQ5 Can HieraSynth discover optimizations beyond those identified by human experts?
RQ6 How efficiently does HieraSynth scale with increasing parallelism?

7.1 Benchmarks

We evaluate HieraSynth on 25 scalar and 26 vector benchmarks. Statistics are in Table 1.
The scalar benchmarks come from Brahma [24], with 25 bit-manipulation programs from

Hacker’s delight [48] rewritten using RISC-V instructions. For these benchmarks, HieraSynth
synthesizes using a subset of RISC-V basic ISA with Zicond (integer conditional) and Zbb (basic
bit-manipulation) extensions. We include four register-immediate instructions (andi, slli, srai,
and srli), and one component returning an immediate (equivalent to the li pseudo-instruction).
Immediates are treated as angelic values [9] to be synthesized by the solvers. We extend the program
space for p20 with division and p25 with multiplication instructions from the M extension. We
use a simple cost model where most instructions have a cost of 1, with higher costs assigned to
multiplication and division instructions. The initial cost is set to the reference cost plus one to
ensure the reference program is included in our synthesis space.

Our first set of vector benchmarks include operators from Highway [16], a C++ library providing
portable SIMD/vector intrinsics optimized for various platforms, including RVV. While Highway
operators aim to achieve performance within 10–20% of hand-coded assembly, we identified 12
operators for further optimization with HieraSynth. Section 7.6 explains the Lt128 operator, and
Highway’s documentation [1] covers other operator semantics. Highway operators are polymorphic
to different RISC-V vector register groupings (LMUL) and vector lengths (VL). We instantiate
operators with LMUL=1 and full vectors and compile them to LLVM IR with clang -O3. The
ZeroExtendResizeBitCast operator is benchmarked with both LMUL=1 to LMUL=2 extension
and LMUL=1 to LMUL=1/2 truncation. For most benchmarks, the program space is fully inferred
from the source program (Section 6.4). For Lt128 and Min128, we include two benchmarks each,
one using the inferred program space for the entire operator and the other incorporating a prologue.
Our cost model for vector synthesis is derived from the LLVM cost model for SiFive X280. We verify
correctness up to 512-bit vectors for all benchmarks. In addition, we gathered 11 kernels from the
vqsort (vectorized Quicksort) algorithm [8]. Some kernels do not cover all 32/64/128-bit values
either because they are not supported or are proven optimal with the inferred program space.

All experiments were run on three Rocky Linux 9.4 servers, each with two Intel Xeon Platinum
8160M CPUs (48 cores/96 threads total) and 768 GB RAM. We use Bitwuzla 0.7.0 SMT solver [35]
with a 3600 s timeout for benchmarks, 500 s for fast-track tasks, and 1500 s for slow-track tasks. We
report mean runtime across three runs per benchmark.

7.2 RQ1: Scaling a Base Synthesizer

We evaluate whether hierarchical program-space decomposition and parallelism help a base syn-
thesizer scale. We instantiate the base synthesizer as Brahma in all our experiments.

Vanilla Brahma does not automatically explore subspaces; instead, it relies on human insights
to augment a standard library to reduce the effective ISA size. Following Brahma [24], we built a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 384. Publication date: October 2025.



HieraSynth: A Parallel Framework for Complete Super-Optimization with Hierarchical Space Decomposition 384:19

Table 1. Benchmark statistics. Program space metrics: number of components (𝑘), choices per component (𝑛),
theoretical number of leaf subspaces (𝐶 (𝑛 + 𝑘 − 1, 𝑘)) if fully partitioned (Leaf), and number of well-typed
programs in the program space (Prog). Performance metrics: instruction count (Inst) and cost (Cost) for
reference (R) and best synthesized (B) programs. N/A indicates unknown metrics as HieraSynth timed out.

Name Space Inst Cost Name Space Inst Cost
𝑘 𝑛 Leaf Prog R B R B 𝑘 𝑛 Leaf Prog R B R B

ZeroExtendResizeBitCast 1 726 7.3e02 2.0e00 12 1 5 0 p01 2 31 5.0e02 9.3e03 3 2 2 2
ConcatLowerLower 2 65 2.1e03 3.7e02 5 2 4 2 p02 2 31 5.0e02 9.3e03 3 2 2 2
ConcatUpperLower 2 65 2.1e03 3.7e02 6 2 8 2 p03 2 31 5.0e02 9.3e03 2 2 2 2
ConcatUpperUpper 2 65 2.1e03 3.7e02 7 2 12 2 p04 2 31 5.0e02 9.3e03 3 2 2 2

ZeroExtendResizeBitCast.Ext 3 473 1.8e07 2.2e03 11 3 22 6 p05 2 31 5.0e02 9.3e03 3 2 2 2
ConcatLowerUpper 4 65 8.1e05 4.2e06 6 4 8 4 p06 2 31 5.0e02 9.3e03 3 2 2 2

AddSub 4 594 5.2e09 6.2e08 11 4 10 5 p07 2 31 5.0e02 9.3e03 4 2 3 2
InsertLane 5 283 1.6e10 5.0e10 10 5 13 6 p08 2 31 5.0e02 9.3e03 4 2 3 2

OddEvenBlocks 5 365 5.5e10 3.8e12 9 5 16 8 p09 2 31 5.0e02 9.3e03 4 2 3 2
Lt128.WithPrologue 6 118 4.2e09 2.1e15 18 6 28 13 p10 4 31 4.6e04 2.3e10 5 4 4 4

MulEven 6 450 1.2e13 2.3e12 13 6 24 19 p11 2 31 5.0e02 8.1e04 3 2 3 2
MulOdd 6 450 1.2e13 2.3e12 13 6 24 19 p12 3 31 5.5e03 3.5e07 5 3 4 3

Min128.WithPrologue 7 116 6.7e10 7.3e23 14 7 22 15 p13 2 31 5.0e02 9.3e03 5 2 4 1
Lt128 7 214 4.5e12 6.3e17 18 7 28 11 p14 4 31 4.6e04 2.3e10 5 4 4 4

Min128 8 212 1.2e14 1.6e22 14 8 22 13 p15 4 31 4.6e04 2.3e10 5 4 4 4
PrevValue_32 2 40 8.2e02 4.4e01 4 2 4 2 p16 1 31 3.1e01 3.0e02 7 1 6 1
PrevValue_64 2 40 8.2e02 4.4e01 4 2 4 2 p17 4 31 4.6e04 1.1e09 5 4 4 4
PrevValue_128 5 286 1.7e10 4.4e10 16 5 26 6 p18 3 31 5.5e03 2.5e06 7 3 6 3

SortPairsDistance4_64 6 77 3.5e08 8.7e10 10 6 12 8 p19 6 31 1.9e06 3.4e17 6 6 6 6
SortPairsDistance1_64 6 212 1.4e11 8.1e12 12 6 18 9 p20 6 32 2.3e06 7.9e14 7 6 39 39
SwapAdjacentPairs_32 6 231 2.3e11 7.9e12 10 6 12 10 p21 7 31 1.0e07 6.6e21 13 7 12 7
SwapAdjacentPairs_64 6 356 2.9e12 2.9e14 11 6 20 9 p22 3 31 5.5e03 2.5e06 12 3 10 2

SwapAdjacentQuads_32 6 714 1.9e14 2.9e14 13 6 20 10 p23 1 31 3.1e01 6.3e01 24 1 15 1
SortPairsDistance1_32 7 514 2.0e15 2.2e17 18 7 28 20 p24 5 31 3.2e05 7.0e11 17 5 12 4
SortPairsDistance1_128 N/A 284 N/A N/A 26 N/A 50 N/A p25 1 35 3.5e01 3.5e02 18 1 24 3
SortPairsDistance4_32 N/A 542 N/A N/A 21 N/A 26 N/A

standard library of 12 commonly used RISC-V instructions. This fixed set is insufficient for optimal
results in 14 of the 25 scalar benchmarks, requiring additional components identified via human
insight. Minimizing such human input can severely limit synthesizable program size, as observed
with Souper [40]. To provide a fair upper bound for the base synthesizer, we simulate Brahma’s
best-case performance by selectively adding exactly the components needed to synthesize the
optimal programs identified by HieraSynth. With this oracle-like advantage, Brahma’s effective
ISA is much smaller than HieraSynth’s full 31–35 instruction choice space.

Unlike the original Brahma evaluation (which reported time to the first valid solution), Fig. 9
reports: (1) time to the best (optimal) solution and (2) time to prove optimality within the declared
program space. With 72 cores, HieraSynth consistently outperforms the base synthesizer, achieving
1.20–106.73× speedups in finding the best solution and 3.16–17.03× speedups in proving optimality.

HieraSynth also outperforms Brahma sequentially (derivable from Fig. 9 with the speedup base-
lines in Fig. 14 and 15). This is not due to parallelism but due to changes in the search methodology
by decomposing on 𝑛: (1) early proofs of unrealizability prune entire partitions, and (2) restricting
available operators reduces the size of each SMT query.
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Fig. 9. Comparison of HieraSynth with the base synthesizer. Bars show synthesis time (seconds) across
benchmarks (log scale; 3600 s timeout). ♦: HieraSynth found cheaper solutions than the reference. ∗: solution
found but not proven optimal within 3600 s on 72 cores. ★: Hacker’s delight benchmarks that require extra
components beyond Brahma’s standard library to achieve the best solution.

7.3 RQ2: Scaling to Vector Synthesis

The scalar benchmarks use a relatively small instruction set and cannot fully demonstrate Hi-
eraSynth’s scalability to large vector ISAs. In Fig. 10, we evaluate HieraSynth on synthesizing
vector programs. We do not compare with Brahma for these vector benchmarks, as constructing a
standard library covering the diverse range of vector instructions needed is impractical. The sheer
number of vector instructions and their complex semantics make manual library construction or
instruction selection extremely challenging for human experts.
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Fig. 10. Synthesis time (seconds, log scale) with HieraSynth for vector benchmarks. Each run uses 72 cores
with a 3600 s timeout. The Highway and vqsort benchmarks are sorted by 𝑘 then 𝑛. *: HieraSynth cannot
prove optimality within the timeout. **: HieraSynth cannot synthesize a solution.

These benchmarks show the practical limits. Among the 26 benchmarks from Highway and
vqsort, our approach successfully synthesizes optimized programs for 25 benchmarks and proves
optimality for 19 of them. The synthesis time generally correlates with program complexity. These
results demonstrate that our tool can handle complex vector kernels with up to 8 output instructions,
demonstrating a significant advance in super-optimization for modern vector ISAs.

For the cases where synthesis failed or optimality could not be proven within the time limit,
we analyzed the exploration patterns by tracking the number of nodes explored at each depth.
Fig. 11 shows these patterns for four representative benchmarks: two successful cases (AddSub
and MulOdd) where optimality was proven, one partially successful case (Min128) where a solution
was found but optimality was not proven, and one failure case (SortPairsDistance1_128). The
presence of pending nodes at deeper depths (shown by dotted lines in Fig. 11) for complex cases
indicates that the search space continues to grow beyond our computational resources.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 384. Publication date: October 2025.



HieraSynth: A Parallel Framework for Complete Super-Optimization with Hierarchical Space Decomposition 384:21

Successful cases show node exploration peaking at moderate depths, indicating effective pruning.
However, benchmarks like Min128 and SortPairsDistance1_128, with 𝑛 ≈ 200–300 and 𝑘 ≥ 8,
experience explosive growth, exceeding search capacity. Future heuristics to detect unrealizable
subspaces more efficiently could help address this. Although more parallelism might also help, we
leave further scaling to future work. Despite these challenges, HieraSynth successfully handles
many complex benchmarks, outperforming prior super-optimizers by a huge margin.
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7.4 RQ3: The 𝑘-vs-𝑛 Trade-off

Fig. 12 quantifies HieraSynth’s impact on the 𝑘-vs-𝑛 trade-off. Prior complete techniques are
constrained by a practical capability frontier (𝑘 = 84.40/ln(𝑛)−14.07, 𝑅2 = 0.90), while HieraSynth
successfully synthesizes solutions across diverse benchmarks, significantly extending beyond this
capability frontier, with up to 10.66× larger 𝑛 for a given 𝑘 , or up to 4.75× larger 𝑘 for a fixed 𝑛.
This demonstrates our approach can handle programs with larger 𝑘 and 𝑛 than previously feasible.
Crucially, for many of these challenging benchmarks, we formally prove the solution’s optimality
in our program space (hatched markers). This enables HieraSynth to address complex, real-
world synthesis problems like vector programming that were previously intractable for complete
super-optimizers.

7.5 RQ4: Effectiveness of Two-Track Synthesis

To answer RQ4, we evaluate the effectiveness of our two-track synthesis approach, with results
detailed in Table 2. The data show the effectiveness of this strategy. For most benchmarks, the
final solution is found without resorting to the more resource-intensive slow-track synthesis, as
evidenced by the “Slow (%)” column being 0.0. This indicates that the fast-track and generalization
phases successfully solved the problem with less computation. Note that a generalization success
rate below 100% does not imply that the fast-track success was spurious. Instead, it often implies
that the task was pruned during generalization after a solution is found in a different subspace and
the new cost bound has been synchronized.
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Table 2. Two-Track Synthesis Success Rate. #Easy shows the number of subspaces that passed the easy
challengers. Slow (%) and Generalization (%) show the percentage of those subspaces that led to a solution via
the slow-track and the generalization step, respectively. Most tasks do not rely on the slow-track. p23 and p25
use a single track on real 64-bit machine configuration. SortPairsDistance1_128 and SortPairsDistance4_32
had no subspaces pass the easy challengers. These benchmarks are excluded.

Name Stats Name Stats
#Easy Slow (%) Generalization (%) #Easy Slow (%) Generalization (%)

ZeroExtendResizeBitCast 5 0.0 64.7 p01 4 0.0 25.0
ConcatLowerLower 1 0.0 100.0 p02 5 0.0 62.5
ConcatUpperLower 4 0.0 83.3 p03 3 0.0 30.0
ConcatUpperUpper 2 0.0 37.5 p04 5 0.0 40.0

ZeroExtendResizeBitCast.Ext 3 0.0 36.4 p05 3 0.0 30.0
ConcatLowerUpper 2 0.0 66.7 p06 5 0.0 18.8

AddSub 1 0.0 60.0 p07 5 0.0 20.0
InsertLane 3 0.0 60.0 p08 5 0.0 20.0

OddEvenBlocks 111 0.9 0.0 p09 4 0.0 25.0
Lt128.WithPrologue 114 0.9 0.0 p10 4 0.0 41.7

MulEven 1 0.0 100.0 p11 2 0.0 50.0
MulOdd 1 0.0 100.0 p12 1 0.0 100.0

Min128.WithPrologue 43 0.8 3.9 p13 5 0.0 94.1
Lt128 21 4.8 1.6 p14 1 0.0 75.0

Min128 49 3.4 1.3 p15 1 0.0 100.0
PrevValue_32 4 0.0 58.3 p16 6 0.0 33.3
PrevValue_64 4 0.0 66.7 p17 1 0.0 100.0
PrevValue_128 14 9.1 0.0 p18 3 0.0 33.3

SortPairsDistance4_64 1 0.0 80.0 p19 1 0.0 60.0
SortPairsDistance1_64 2 0.0 85.7 p20 1 0.0 100.0
SwapAdjacentPairs_32 1 0.0 100.0 p21 1 0.0 100.0
SwapAdjacentPairs_64 2 0.0 83.3 p22 3 0.0 40.0

SwapAdjacentQuads_32 1 0.0 100.0 p24 2 0.0 57.1
SortPairsDistance1_32 1 0.0 100.0

7.6 RQ5 & Case Study: Synthesis of Lt128 Operator in Highway

To assess HieraSynth’s capability to discover non-trivial optimizations, we examine its synthesis of
the Lt128 operator from Highway. This operator compares 128-bit integers formed by concatenating
adjacent 64-bit elements from two input vectors, returning a mask indicating whether each 128-bit
integer in the first vector is less than the corresponding one in the second. Each comparison
contributes two (duplicated) bits in the resulting mask. See Fig. 13a for an illustration.

The original Lt128 implementation follows a step-by-step approach: (1) 64-bit element-wise less
than and equal to comparisons, (2) assembly of intermediate results, (3) duplication of results for
adjacent bits. This approach requires mask manipulation operations not directly provided by RVV
(like shifting and ternary operations). The conventional trick involves converting masks to vectors
(with each mask bit corresponding to one element), applying vector instructions, then converting
back to masks. This is a recognized technique that is known to be inefficient [2]. In the original
implementation (Fig. 13a), v4 and v5 are such converted masks.

This implementation is suboptimal, particularly on X280. As masks occupy only a fraction of
vector registers, using LMUL=1 instructions on converted masks takes twice the time of mask
operations or vector operations with fractional LMUL. We attempted to optimize this program with
an early version of our tool, which was not scalable enough to synthesize the operator as a whole.
However, it seemed that the first two comparisons must be present in any optimized solution.
Under this assumption, we successfully synthesized the left path in Fig. 13b using the comparisons
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lhs [86,76,45,31,56,32,34,12]

rhs [86,77,45,30,57,32,34,12]

v1 = vmseq.vv(lhs, rhs)
v2 = vmsltu.vv(lhs, rhs)
v3 = vmv.v.i(0)
v4 = vmerge.vim(v3, -1, v1)
v5 = vmerge.vim(v3, -1, v2)

v4 [-1, 0,-1, 0, 0,-1,-1,-1]

v5 [ 0,-1, 0, 0,-1, 0, 0, 0]

v6 = vslide1up.vx(v5, 0)
v7 = vand.vv(v4, v6)
v8 = vor.vv(v5, v7)
v9 = vslide1down.vx(v8, 0)

v8 [-1,-1, 0, 0,-1, 0, 0, 0]

v9 [ 0,-1,-1, 0,0 ,-1, 0, 0]

v10 = vid.v()
v11 = vand.vi(v10, 1)
v12 = vmseq.vi(v11, 0) // 0x55
v13 = vmerge.vvm(v8, v9, v12)
v14 = vmsne.vi(v13, 0)

v14 0b11001100

(a) Highway baseline for Lt128

lhs [86,76,45,31,56,32,34,12]

rhs [86,77,45,30,57,32,34,12]

// prologue
v1 = vmseq.vv(lhs, rhs)
v2 = vmsltu.vv(lhs, rhs)

v1 0b10100111

v2 0b01001000
v1 = vmsltu.vv(lhs, rhs)
v2 = vadd.vv.u8mf8(v1, v1)
v5 = vmsleu.vv.mu(
dest=v2, mask=v1, lhs, rhs

)

v5 0b11011000

v3 = vadd.vv.u8mf8(v2, v2)
v4 = vand.vv.u8mf8(v1, v3)
v5 = vxor.vv.u8mf8(v2, v4)

v3 0b10010000

v4 0b10000000

v5 0b11011000

v6 = vand.vi.u8mf8(v5, 0xaa)
v7 = vsrl.vi.u8mf8(v6, 1)
v8 = vadd.vv.u8mf8(v6, v7)

v8 0b11001100

(b) HieraSynth-optimized Lt128. Left: prologue with synthesized body.
Right: end-to-end synthesis. End-to-end version fuses instructions.

Fig. 13. Lt128 case study. We assume VLEN=512 and LMUL=1, thus each vector has 512 bits (8× 64-bit values).
The first lane is shown as the rightmost value in vectors. Bitcasts are omitted for brevity.

as a prologue. The program bitcasts masks to LMUL=1/8 vectors and uses corresponding vector
instructions, reducing the estimated cycle count by >50%. For Lt128 instantiated with LMUL=8,
similar optimization yields approximately 4× speedup. The significant improvement led us to
believe that this version was optimal, and we submitted a patch that was merged by the Highway
developers.

With later improvements to HieraSynth, we attempted to synthesize Lt128 without a prologue.
Surprisingly, HieraSynth discovered an even more optimized implementation (right path in Fig.
13b) leveraging masked undisturbed intrinsics to fuse the first two steps. While this approach could
be synthesized using a peephole optimization on the left path, no previous system could synthesize
that left-path transformation end-to-end; it is beyond peephole optimization’s capability.

This case highlights HieraSynth’s ability to surpass expert optimizations by exploring innovative
paths without the biases that experts’ familiarity with established solutions can introduce.

7.7 RQ6: Parallel Speedup

To evaluate HieraSynth’s parallel scalability, Fig. 14 and Fig. 15 present the speedup with different
numbers of cores for synthesizing the best solution and proving optimality. In each figure, we
omit benchmarks that finished in 10 seconds on a single core, as short tasks have limited potential
for parallel acceleration. The benchmarks are arranged in ascending order of single-core time to
highlight the scaling trend from less to more computationally intensive tasks.

In Fig. 14, several benchmarks, such as PrevValue_128 and p21, achieve nearly linear scaling
up to 72 cores. The system typically achieves more than 24× speedup for other complex tasks with
48-72 cores. This indicates that computationally intensive tasks benefit most from parallelism. The
limitations to this scaling stem from the fact that, as the number of cores increases, more cores may
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Fig. 14. Parallel speedup for the time to the best solution, relative to a single core.

work on tasks that are ultimately pruned, resulting in wasted work. A more advanced scheduling
strategy to better prioritize tasks could mitigate this issue by reducing redundant computation.
Developing such strategies remains future work.
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Fig. 15. Parallel speedup for proving optimality, relative to a single core.

In Fig. 15, we observe a similar trend for proving optimality as in Fig. 14, although the overall
speedup is typically smaller. This mostly comes from a long-tail in the final stage of parallel
synthesis. At this stage, most tasks have been pruned, leaving a small number of remaining tasks.
When the number of remaining tasks is fewer than the available cores, some cores remain idle.
This reduces effective parallelization and diminishes the speedup.

Overall, although scalability can be limited by the long tail effect in the optimality-proving
phase and redundant work on pruned tasks, HieraSynth demonstrates effective parallel scalability,
especially for complex tasks requiring extensive search space exploration.

8 Related Work

8.1 Super-Optimizers

Super-optimization, pioneered by Massalin [32], exhaustively searches for shortest instruction
sequences but with significant restriction on ISA size. Later work improved scalability through
techniques like exploiting symmetries (Bansal’s system [6]) and bidirectional search (Lens [37]), of-
ten combined with peephole-style optimizations. Another class of techniques uses e-graphs [34, 36]
and equality saturation [44, 45, 50] as seen in Denali [25, 26], Tensat [51] and Diospyros [47].
However, these approaches rely on expert-provided rewrite rules, limiting them to known op-
timization patterns. Solver-based tools like Sketch [42, 43] and Brahma [15, 24], Souper [40],
and Minotaur [29] leverage SMT solvers to automate the search. These systems, however, either
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require users to provide insights or face scalability limits. In contrast, incomplete approaches, such
as STOKE [41], use stochastic search, sacrificing the ability to guarantee optimality.

8.2 Parallelism in Program Synthesis

Parallelism is widely used to accelerate program synthesis. Morpheus [14] explores different
program sizes in parallel to find a first solution faster. Adaptive concretization [22, 23] uses sta-
tistical trials to guide parallel exploration of instantiation of symbolic bits. Synapse [10] explores
parameterized sketches in parallel. These systems explore different portions of the program space
in parallel but do not systematically partition the space. Some specialized parallelization techniques
are also used in some fields. Paresy [46] applies a data-parallel technique on GPUs to regular expres-
sion synthesis, and Synthphonia [12] orchestrates asynchronous cooperation between a deducer
and enumerators to synthesize string transformations. The most analogous work, PASSES [17],
decomposes the synthesis problem based on the instruction selection set. However, its partitioning
is static, while its optional adaptive mode sacrifices completeness (and hence optimality). In contrast,
HieraSynth’s hierarchical decomposition is both adaptive and complete. HieraSynth creates
“goldilocks” subspaces and scalable super-optimization without sacrificing optimality.

8.3 Combining Symbolic and Explicit Search

Synthesis approaches often combine symbolic and enumerative search but differ in their decompo-
sition strategies. Adaptive concretization [22, 23] uses random sampling to selectively concretize
symbolic bits but ignores high-level program space structure, while Synapse [10] uses a gradient-
guided search over sketches that can be bottlenecked by the single hardest case, limiting parallel
speedup. Other techniques structurally partition the problem. Synqid [38] synthesizes recursive
functional programs by enumerating top parts of the program and synthesizing remaining parts
with liquid abduction. DryadSynth [21] also uses divide-and-conquer as HieraSynth does, but
partitions the program specification, while HieraSynth partitions the program space.

8.4 Optimal Synthesis

Many program synthesizers consider optimality as a criterion. Chaudhuri et al. [11] propose a
smoothed proof search technique for optimizing a program with parameter holes with an optimality
measure. The smoothed proof search approach reduces optimal synthesis to optimization problems
that are solved numerically. The Symba approach [28] optimizes objective functions in the theory
of linear real arithmetic with SMT solvers. It maintains under- and over-approximation of the
optimal solution and gradually converges to the solution. Synapse [10] proposes a framework for
optimal synthesis with a set of sketches with increasing difficulty and cost bounds. Sketches may
be pruned if they cannot contain a more optimized program. There are also works doing implicit
optimal synthesis by selecting preferable solutions in the program space, as in FlashMeta [39].

9 Conclusion

We present HieraSynth, a parallel super-optimization framework that uses hierarchical decomposi-
tion on instruction selection to overcome the trade-off between output program size and instruction
set size that limits existing systems. HieraSynth efficiently synthesizes complex vector programs,
outperforms prior methods, surpasses expert-designed optimizations, and achieves near-linear
parallel scalability while preserving completeness. This makes super-optimization practical for
modern vector architectures like RVV.

10 Data-Availability Statement

The artifact of HieraSynth consists of two parts.
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(1) The HieraSynth library: a generic Haskell library that implements the algorithms, built on
top of the Grisette [30] symbolic evaluation engine.

(2) An RVV synthesizer implemented using HieraSynth. This synthesizer supports a subset of
the RISC-V ISA, including the vector extension and additional extensions, integrated with
our type system described in Section 6.2. It also includes a converter that translates LLVM IR
into programs represented in our format and types.

All figures and tables in the benchmark section are generated using scripts that process raw
data produced by the artifact, with the exception of Fig. 11 and 12. For Fig. 11, we executed the
benchmarks once, manually collected the data, and hardcoded it into our script. For Fig. 12, the
statistics for related tools are hardcoded in the script, and some estimated values may be subject to
inaccuracies. The artifact has been archived [31].
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