
Faster Mutation Analysis with Fewer Processes and
Smaller Overheads

Bo Wang1,2,3*, Sirui Lu4,5*, Yingfei Xiong4,5§, Feng Liu1

1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China

3CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation, Beijing, China
4Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing, China

5Department of Computer Science and Technology, EECS, Peking University, Beijing, China

wangbo_cs@bjtu.edu.cn, {lsrcz, xiongyf}@pku.edu.cn, fliu@bjtu.edu.cn

Abstract—Mutation analysis is a powerful dynamic approach
that has many applications, such as measuring the quality of
test suites or automatically locating faults. However, the inherent
low scalability hampers its practical use. To accelerate mutation
analysis, researchers propose approaches to reduce redundant
executions. A family of fork-based approaches tries to share
identical executions among mutants. Fork-based approaches
carry all mutants in one process and decide whether to fork
new child processes when reaching a mutated statement. The
mutants carried by the parent process are split into groups
and distributed to different processes to finish the remaining
executions. However, existing fork-based approaches have two
limitations: (1) the limited analysis scope on a single statement
to compare and cluster mutants prevents their systems from
detecting more equivalent mutants, and (2) the interpretation
of the mutants and the runtime equivalence analysis introduce
significant overhead.

In this paper, we present a novel fork-based mutation analysis
approach WinMut, which (1) groups mutants in a scope of
mutated statements and, (2) removes redundant computations
inside interpreters. WinMut not only reduces the number of
invoked processes but also has a lower cost for executing a single
process. Our experiments show that our approach can further
accelerate mutation analysis with an average speedup of 5.57x
on top of the state-of-the-art fork-based approach, AccMut.

Index Terms—software testing, dynamic analysis, mutation
analysis, mutation testing, fork-based mutation analysis

I. INTRODUCTION

Mutation Analysis [1], [2] is a dynamic program analysis

approach based on fault seeding. To perform mutation analysis,

we first make simple syntactic changes to create a set of faulty

programs called mutants. Then we execute these mutants

against the test suite and compare the results with the result

of the original program.

Mutation analysis is originally designed for mutation test-

ing, i.e., evaluating the capability of a test suite for revealing

faults [3], [4], [5], [6], [7]. In mutation testing, the mutants

are treated as seeded faults. The more mutants a test suite

detects, the more effective it is. Besides evaluating test suites,

*These two authors contribute equally to the work. §Corresponding author.
This work is supported in part by the National Key Research and Devel-
opment Program of China No. 2019YFE0198100, National Natural Science
Foundation of China under Grant Nos. 61922003.

mutation analysis has been applied to many software engi-

neering problems. For example, mutation analysis is used to

automatically locate faults for relieving debugging burdens [8],

[9], [10], [11], [12]. Mutants can be treated as not only

patches in automated program repair [13], [14], [15], but

also substitutions of real-world bugs when they are hard to

collect [16]. Recently some research fields, such as smart

contract [17] and deep learning [18], adopt mutation analysis

to enhance system quality.

Despite the promising prospect shown both in software

engineering research fields and industrial applications [19],

[20], mutation analysis is still limited by its scalability issues.

Given a test suite with n test cases and a program with m
mutants, for each test case, the standard mutation analysis must

invoke m processes to execute the mutants. This procedure

results in m∗n executions. Although some trivially equivalent

mutants can be filtered during compile time [21], m could

still be very large with the program size scaling up, leading

to unaffordable costs in practice.

As a result, many approaches have been proposed to

enhance scalability. A basic method is to reduce run-time

costs by removing redundant computations. Among them, a

family of fork-based mutation analysis approaches tries to

reduce redundant executions among mutants. A fork-based

approach invokes a single process to carry the execution

of all mutants. Once it encounters a mutated statement, it

decides whether to fork new child process(es) to carry subsets

of the active mutants carried by the current process. Split-

stream execution [22], [23], [24], which is an early fork-based

approach, always forks child processes to carry the mutants

when it executes a mutated statement for the first time. It

shares the common executions of a mutant with the original

process before the first mutated statement is executed. Acc-

Mut [25], the state-of-the-art approach of the family, reduces

redundancies by clustering mutants from the same mutated

statement which are equivalent modulo the current state.

Concretely, AccMut starts a process representing all mutants,

shares the same executions before mutated statements as split-

stream execution. When the execution reaches a statement with

mutants, AccMut interprets each active mutant of the statement

and collects their output states. AccMut clusters the mutants

381

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00042

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

88
27

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

that have the identical output state, i.e., equivalent modulo
state, and forks a set of child processes. Each process carries

the mutants in a cluster. In this way, AccMut can share the

remaining executions among the mutants in a cluster.
The overall running time of fork-based mutation analysis

approach can be roughly modeled as the product of the

number of processes and per-process running time. However,

the existing approaches are not optimal in the two aspects:

1) (number of processes) The existing approaches missed

a lot of opportunities to share the executions of the

mutants.

2) (per-process running time) AccMut relies on an inter-

preter to handle the mutations, introducing large over-

head.

Let us consider the number of processes first. For example,

in the following code snippet with 3 mutants (M1, M2, and

M3), there are extra redundancies that are not recognized by

AccMut.

a = b + c; //M1: (b+1)+c, M2: (b++)+c
d = a + e; //M3: (a+1)+e
return d;

In AccMut, these mutants will be separated into 3 different

child processes, because (1) M1 and M2 result in two states

where the values of b are distinct, and (2) M3 is located

in a different statement. This is not the optimal solution.

As only the variable d affects the execution henceforth, the

difference in the values of b will not affect the remaining

executions, so it should not be included in state comparison.

Furthermore, after excluding b from the state comparison, we

can find that the mutants from two different statements (i.e.,

M1 and M3) can be equivalent. More generally, mutants in a

larger scope with different program states could ultimately be

equivalent. A better solution for this case is to use the current

process to carry the original program and M2, and fork a

child process to carry M1 and M3. Extending the equivalent

mutation recognition scope is non-trivial as (1) we need to

recognize the effective set of program variables to do the state-

comparison, and (2) we need to carefully design the algorithm

to avoid introducing too much extra run-time overhead.
For the per-process running time, the overhead introduced

by the current approaches is dramatically significant. To man-

age many mutants in a single process, the existing approaches

instrument code and use an interpreter to handle the mutated

statements, and the overhead is getting more significant as the

algorithm for identifying the equivalent mutants at run-time

is getting more complex. AccMut, for example, reports that

it executes 78x more statements for a process approximately.

This constant overhead introduced by the interpreter cannot

be ignored. We notice the sparsity of mutated statements of

a single mutant in the first-order mutation analysis scenario,

that is, a mutant only contains one mutated statement. Based

on this, we find that for a child process with only a subset

of all the mutants, the statements could be executed with

different policies: interpret the statements that are affected

by some mutant (i.e. the slow way) and execute other state-

ments directly with the compiled original version (i.e. the

1 uint foo(int a, int b) {
2 int sum=a+b; //M1:a-b, M2:a*b, M3:a/b
3 int avg=sum/2; //M4:(--sum)/2, M5:(sum-1)/2
4 int c=bar(avg); //bar() is side effect free
5 return c;//M6:c-1
6 }
7 void test() {
8 assert(foo(5, 1)==RESULT);
9 }

Figure 1: A motivating example. There are 5 mutants generated on
the two expressions in the function foo.

fast way). The implementation is non-trivial when combined

with extended analysis scopes. We designed a fast algorithm

to analyze the set of statements that are safe to be executed

with the compiled original version, and we designed the data

structures and instrumenting methods to support the runtime

selection of execution policies.

We implemented our approach in WinMut as an LLVM-

IR based mutation analysis framework. We have evaluated

WinMut on 10 large-scale, real-world C programs with more

than 20 million mutants and 1149 tests. The evaluation shows

WinMut further accelerates mutation analysis with a geometric

average speedup of 5.57x on top of the state-of-the-art ap-

proach, AccMut. WinMut is open source and is available at the

repo https://github.com/winmutase21/WinMutASE21Artifact.

II. MOTIVATING EXAMPLE

In this section, we describe the general idea of our two

optimizations. We describe how a fork-based mutation analysis

algorithm operates on the program in Fig. 1.

The code in Fig. 1 first calculates the average avg of a and

b (Line 2-3), then invokes the function bar to get the result c,

and finally returns c. To make the example simpler, we assume

that there are not mutants inside of bar, and it is side-effect-

free so that it will not change the value for sum and avg.

There are 6 mutants generated on the code snippet. M1, M2,

and M3 change the expression at Line 2, from a+b to a-b,

a*b, and a/b, respectively. M4 and M5 change the expression

at Line 3, from sum/2 to (--sum)/2 and (sum-1)/2,

respectively. M6 changes the value to be returned at Line 5,

from c to c-1.

Driven by the input, we perform standard mutation analysis,

split-stream execution, AccMut, and our approach WinMut

on the program respectively. We first demonstrate how these

approaches execute on Line 2-4 and how WinMut reduces the

number of processes. Then we show how these approaches

execute on Line 5 and how WinMut avoids the overhead inside

the interpreter.

A. Fewer Processes

The execution of a program can be viewed as a sequence

of state transitions. Fig. 2 shows the state transitions of these

approaches from the very beginning to Line 4. We use the

functions mapping variables to their values to represent the

states.

382

interpret

interpret

split

split

interpret

interpret

partition
{sum,a,b}

partition
{sum,avg,a,b}

split

split

interpret

interpret

partition
{avg}
split

Line 2:

Line 3:

Line 2:

Line 3:

Line 2:

Line 3:

Line 4: Line 4: Line 4:

execute

execute

Line 2:

Line 3:

Line 4:

σ0 : {· · · }
σ1 : {sum �→ 6, · · · }
σ3 : {sum �→ 4, · · · }
σ5 : {sum �→ 5, · · · }
σ2 : {sum �→ 6, avg �→ 3, · · · }
σ4 : {sum �→ 4, avg �→ 2, · · · }
σ6 : {sum �→ 5, avg �→ 2, · · · }
σ7 : {sum �→ 6, avg �→ 2, · · · }
σ9 : {avg �→ 3, · · · }
σ10 : {avg �→ 2, · · · }

σ8, σ
′
0 : {sum �→ {{Ori,M4,M5,M6} �→ 6,M1 �→ 4,M2 �→ 5,M3 �→ 5}, · · · }

σ′′
0 : {(sum) �→ {(6) �→ {Ori,M4,M5,M6}, (4) �→ {M1}, (5) �→ {M2,M3}}, · · · }

σ′
1 : {sum �→ {{Ori,M6} �→ 6,M4 �→ 5,M5 �→ 6}, avg �→ {{Ori,M6} �→ 3,M4 �→ 2,M5 �→ 2}, · · · }

σ′′
1 : {(sum, avg) �→ {(6, 3) �→ {Ori,M6}, (5, 2) �→ {M4}, (6, 2) �→ {M5}}, · · · }

σ′
3 : {sum �→ {{M1} �→ 4}, avg �→ {{M1} �→ 2}, · · · }

σ′′
3 : {(sum, avg) �→ {(4, 2) �→ {M1}}, · · · }

σ′
5 : {sum �→ {{M3} �→ 5}, avg �→ {{M3} �→ 2}, · · · }

σ′′
5 : {(sum, avg) �→ {(5, 2) �→ {M1}}, · · · }

σ′
8 : {avg �→ {{Ori,M6} �→ 3,M1 �→ 2,M2 �→ 2,M3 �→ 2,M4 �→ 2,M5 �→ 2}, · · · }

σ′′
8 : {(avg) �→ {(3) �→ {Ori,M6}, (2) �→ {M1,M2,M3,M4,M5}}, · · · }

(e) Program States (The variables after interpret but before partition are illustrated as a mapping from mutants to values. Some mutants are grouped
because (1) in split-stream execution or AccMut, they are not generated on the current statement (2) in WinMut, they are handled with specialized data
structures which we will elaborate later. After partition, the partitioned states are illustrated as tuples of variables, and the values are illustrated as
mappings from tuples of values to sets of mutants). Such as a and b, some unnecessary variables omitted in the states.

Figure 2: The procedure of standard mutation analysis, split-stream execution, AccMut, and WinMut on the code in Fig. 1. The procedure
of handling a statement is decomposed into primitives. The circles represent the states after handling each statement. The squares represent
the states after the primitives. States with the same labels are identical.

In the figure, the arrows stand for the transitions of states.

We abstract the execution of fork-based mutation analysis with

an execution engine. The execution engine can be viewed

as a virtual machine and is transparent to the program.

The execution engine could execute the statements by just

delegating to the physical machine (the fast path), or interpret

the statements with the internal states stored in the engine

(the slow path). For readability, we use circles to represent

states at the statement level (i.e., the states after the execution

engine fully executed a statement) and use squares to represent

internal states between primitives inside an execution engine

(which is transparent to the program). In the figure, the states

having the same name are identical. In other words, having

them in multiple processes is redundant and is a waste of

computing resources.

Fig. 2(a) represents the procedure of standard mutation

analysis. To collect the results of the 6 mutants (M1-M6)

and the original program (Ori), standard mutation analysis

separately compiles 7 programs and runs them against the

test suite in a brute force fashion. As we can see, there

are considerable redundant state transitions. For example, 6

transitions to σ0 before Line 2 and Line 3 transitions from σ6

to the end in the processes of M2-M4 are redundant.

To remove redundant executions, fork-based approaches are

proposed to execute multiple mutants in a single process and

split the execution stream into child processes when necessary.

To execute a batch of mutated statements in one process, the

execution engines of fork-based approaches support a more

complex design of state. In standard mutation analysis, a state

maps a variable to a value, for example, σ1(sum) → 6. While

in fork-based approaches, a state maps a variable to a function

which maps a set of mutants to a value, which we call a multi-
value variable. For example, in the state σ′

0 in Fig. 2(b), sum
is mapped to the function which consists of 4 mappings (i.e.

{{Ori,M4,M5} �→ 6, {M1} �→ 4, {M2} �→ 5, {M3} �→ 5}),

and the value of sum for the mutant M3 is σ′
0(sum)(M3) → 5.

Equipped with multi-value variables, we abstract conceptu-

ally atomic operations used by fork-based mutation analysis

into the following 4 primitives.

1) execute for delegating to the physical machine to

execute the original statement,

2) interpret for executing a set of active (carried by

the current process) mutated statements of the same lo-

cation, and updates the states with multi-value variables,

383

3) partition for partitioning the mutants into equiva-

lence classes by the states of multi-value variables,

4) split for splitting the execution stream into child

processes to finish remainder executions.

Fig. 2(b) represents the procedure of split-stream execution.

In split-stream execution, the execution engine starts a main

process carrying all 6 mutants (M1-M6) and the original

program (Ori). When the main process reaches the mutated

statement Line 2, the execution engine enters the interpreter

and invokes interpret to evaluate 4 versions of Line 2,

which transforms the state to an internal state σ′
0. The engine

performs split to fork 3 child processes for each mutant and

continues the execution of the main process. The main process

similarly proceeds Line 3, where 2 more child processes are

forked for M4 and M5 respectively. Although split-stream

execution significantly removes the redundant states before

the first mutated statement (e.g., 6 redundant transitions to

σ0), it cannot reduce redundant states after the first mutated

statement.
Fig. 2(c) represents the procedure of AccMut. It extends the

split-stream execution’s algorithm with the ability to merge

mutants. Like split-stream execution, AccMut also carries

all mutants with the main process. When the main process

reaches Line 2, the execution engine interprets the mutated

statements. The difference arises after interpreting, where

AccMut further invokes the primitive partition with all

accessible variables (sum, a, and b). In Fig. 2, the variables

used to perform partition are marked in green color. The

primitive partition clusters the states of these variables

into equivalent classes, and then each class is split into a new

child process. In this way, M2 and M3 can share the executions

of equivalent mutants modulo the current state in a process.

Similarly at Line 3, AccMut performs partition against

the states of {sum, avg, a, b} and forks 2 child processes

for M4 and M5 respectively.
Although AccMut saves execution effort between M2 and

M3, it is still not good enough. (1) AccMut is unable to

merge equivalent mutants generated on different locations. For

example, M4 and (M2,M3) are located at different statements,

and they would be separated into two child processes because

they have different program states after executing Line 2.

However, if we further execute the mutants, we find that the

3 mutants finally step into the same state σ6 under the given

input, which implies that these mutants could be carried by

one process and share the remaining execution. (2) AccMut

does not analyze what program variables affect the final result,

and can only merge mutants that result in an identical state.

For instance, M1 and (M2,M3) would step into σ4 and σ6

respectively. So they cannot be executed in one process in

AccMut. However, referring to Fig. 1, we find that the different

part in σ4 and σ6, the program variable sum, does not affect

the final result. So it is safe to ignore this difference and

execute the 3 mutants in a single process.
Fig. 2(d) shows the execution of our approach WinMut.

Referring to the executions of AccMut, though some mutants

are from different lines or in different states, they produce the

interpret
Line 5:

(a) AccMut (b) WinMut

a b c a

M4 M5 M1 M2,M3

b' c' a'a'

b" c" a"a"

d e f g

h

i

Line 5:
execute

partition

M1-M5

split

Figure 3: Redundant primitive invocations. The contents of the states
(σa, σb, · · ·) are not needed, so we leave them abstract.

same output after executing several statements further. Thus to

merge more mutants, WinMut tries to (1) postpone the timing

to perform partition and split, and (2) conservatively

figure out the variables that may affect the test result to per-

form partition. WinMut continuously interprets a scope

of statements (e.g., Line 2-3), until it reaches a statement that

changes control-flow (e.g., the function call at Line 4), where

it should perform partition and split. We decide to split

at control-flow statements to avoid maintaining call stacks and

path conditions, which may lead to more complex states and

more significant overhead. Moreover, at Line 4, the remainder

code only depends on the variable avg, which can be figured

out by static analysis. So WinMut only clusters the active

mutants against the state of the variable avg, which enables

it to merge more mutants with possibly different program

states. For example, M4 and M5 are clustered into a group

though the values of sum are different (σ6(sum)(M4) → 5,

σ7(sum)(M5) → 6). Based on our 2 innovations, M1-M5 are

all merged into one process, which significantly reduces the

number of processes.

B. Faster Processes

We compare the state-of-the-art approach AccMut with

ours, to illustrate how WinMut avoids redundant invocations

of high-cost primitives. Fig. 3(a) shows the executions of child

processes after Line 4 in AccMut and WinMut. In the previous

sub-section, AccMut forks 4 child processes carrying a set

of mutants to continue the execution. When these processes

reach a new mutated statement at Line 5, the execution engine

still enters the interpreter, performs the sequence of high-cost

primitives, that is, interpret, partition and split.

However, by the definition of the first-order mutation analysis

that each mutated program can have one mutated statement,

these child processes definitely would not contain mutated

statements at Line 5. In other words, these invocations of the

interpreter primitives are unnecessary.

Fig. 3(b) shows how WinMut executes after Line 4 in the

child process. WinMut’s execution engine figures out that

the child process has already carried mutants, and directly

performs execute against Line 5. To support this, WinMut

384

maintains a global set containing all the statements that need to

be interpreted, and the set is updated when it performs split.

More concretely, when WinMut performs split during in-

terpreting Line 3, it dynamically analyzes the statements that

would be affected by the active mutants (M1-M5), and sets

the global set to these statements (Line 2-3). When the child

process reaches Line 5, it finds the line does not belong to the

set and executes it as is. Thus in this example, WinMut avoids

the high overhead introduced by the interpreter.

This optimization is non-trivial when combined with ex-

tended analysis scopes for two reasons: (1) we need to analyze

the set of statements that is safe to be delegated to the physical

machine, and (2) we need to make sure that the delegation

preserves the semantics. Unlike the AccMut, in which the

execution engine does not hold any internal states beyond the

boundary of a statement and is automatically transparent to the

program, our approach needs to use specialized data structures

to make the execution engine transparent and compatible with

both interpreter and the physical machine.

We will elaborate on our efficient implementation later.

III. METHODOLOGY

A. Definition and Notation

In this subsection, we define a set of necessary concepts

and notions which enable us to describe from an abstract view.

For conciseness, we adopt some necessary definitions from the

AccMut paper [25].

A program P can be viewed as a set of locations, and a

mutation function p maps each location to a set of variants.

Each variant v consists of a code block (denoted as v.code),

which is either the original code block of the location or a

mutated one. Let the function ori map a location to the variant

containing the original code block. By the definition of first-

order mutation analysis, a mutant is a program with only one

mutated location. Each mutant has a unique mutation ID i.
Let the function μ map a location l and a mutation ID i to a

variant v, denoted as μ(l, i) → v, meaning that the mutant i
should use the variant v at the location l.

Given a program P , let Σ be all the possible states and L
be its location set. Let the function φ : Σ → L map a state to

a location of P to be executed, similar as the program counter.

The execution of a program can be viewed as a sequence of

state transitions, from the initial state to the terminal state ⊥,

which means the process is finished.

In standard mutation analysis, a state is a function mapping

variables (i.e. storage units) to values (i.e. numbers), denoted

as σ : S → Z. Here S is the universal set of the storage units

of a physical machine, which includes not only the program

variables in the RAM, but also the files stored in the hard

drive or other resources provided by the OS. They could be

handled by lazily mapping to the RAM. However, in fork-

based mutation analysis, as a process may execute a set of

variants at a location, a variable may come from the results of

the executions of different variants. Let a multi-value variable

(demoted as MVV) be a map from mutants to values, denoted

as MVV : M → Z, where M is the universal set of the mutants

of P . Thus the state in fork-based mutation analysis of a

program P can be defined as a function maps variables to

MVVs, denoted as:

σ : S → 2
⋃

L∈P

⋃
v∈p(L)

⋃
z∈Z

{v �→z}.

The state of standard mutation analysis is a special case of

the fork-based state, whose MVV only contains one mapping

meaning that the variable only has one value, and this mapping

maps a variant set of size one.

To manipulate the multi-value variable equipped states, we

define three operations: project, restrict and update. Given a

multi-value variable equipped state σ and a mutant i, let the

operation project return the state where all multi-value vari-

ables are reduced to single-value variables corresponding to i,
denoted as σ@i. For example, given the state σ : {a �→ 1, b �→
{Ori �→ 1,M1 �→ 2}}, we have σ@M1 : {a �→ 1, b �→ 2}.

As a convention, we will use ρ to denote the projected states,

where all variables map to single values. Given a state σ and a

variable set V , the operation restrict denoted by σ|V gets the

partial state that only contains the mappings of the elements

in V . The operation update denoted by σ[o] ← v replaces the

value of the variable o in σ to the value v, where v could be

either a mapping from mutant to values or a single value.

Given a variant v and a state σ, the primitive

execute(v.code,σ) executes the code block v.code under

the state σ and updates the state in-place. The function

evaluate(v.code, σ) evaluates v based on σ and returns

the output state without updating the state in-place. execute
and evaluate requires that all the input variables for v are

single-value.

B. Models of Existing Fork-based Approaches

Based on the notations and definitions, we model the exist-

ing fork-based mutation analysis approaches in this section.

Different from the standard mutation analysis, in fork-based

mutation analysis, we may execute more than one variant for

the locations or execute a variant based on different program

states. These locations should be interpreted by the execution

engine. To perform interpretation, fork-based approaches in-

voke a procedure called proceed which implements their

core algorithms. The main loop of fork-based mutation analy-

sis can be modeled as Algorithm 1. First, the execution engine

initializes the set G which is used to control whether a location

is executed by interpretation or delegation to the physical

machine, and activates all the mutants (Line 1-2). The process

loops as long as there is a location to be executed (Line 3). At

each step, the execution engine first picks the location to be

executed (Line 4), then analyzes whether the location should

be interpreted or executed by the physical machine (Line 5-9).

Split-stream execution and AccMut initialize G by calling

the procedure initialize which adds all the mutated loca-

tions of P , and will not change G anymore. So the execution

engine interprets the location by the procedure proceed if

the current location is mutated (Line 6), otherwise delegates it

to the physical machine by the primitive execute (Line 8).

385

Input: P : a program
Data: σ: the program state initialized by test input
Data: G: a set of locations should be interpreted by the

current process
Data: I: a set of mutation IDs of the current process

1 G← initialize(P)
2 I ← all mutant IDs of the program
3 while φ(σ) �= ⊥ do
4 l← φ(σ)
5 if l ∈ G then
6 proceed(l)
7 else
8 execute(ori(l).code, σ)
9 end

10 end
Algorithm 1: Main loop of fork-based mutation analysis.

In split-stream execution, the procedure proceed invokes

the primitive interpret and split in turn. That is, it

filters active mutants of the location L, then executes the code

block for each mutant and records the affected values for each

mutant, and finally forks new child processes for each mutant

to finish the remainder executions.

AccMut optimizes the procedure proceed of split-

stream execution by inserting an invocation of the primitive

partition between interpret and split. The primi-

tive partition builds equivalent classes based on the states

of active mutants and performs split for each equivalent

class, rather than a single mutant. In this way, AccMut merges

the mutants in the equivalent classes in a process and shares

their remainder executions.

As aforementioned, AccMut suffers from two limitations:

(1) unable to share the executions of mutants which are from

different locations or step into different states, (2) introducing

considerable overhead by unnecessary entering proceed too

many times. To overcome the limitations, we present WinMut,

which reduces the number of processes and cuts down the

execution overhead.

C. Fewer processes

Input: l: the current location
Data: σ: the current state
Data: I: a set of mutation IDs of the current process
Data: G: a set of locations should be interpreted by the

current process
Data: CFG: the control-flow graph

1 interpret(l)
2 if need_split(l) then
3 O ← output_variable(l, CFG)
4 X ← partition(σ|O)
5 split(X)
6 pid← getpid()
7 if is_child_process(pid) then
8 G← the forward slice of the locations of the

mutants in I
9 end

10 end
Algorithm 2: Algorithm of proceed in WinMut.

The general idea of using fewer processes is to (1) enlarge

the range of analysis rather than perform partition and

split at each location, (2) only cluster the mutants based on

a set of necessary variables (i.e. a partial state).

The procedure proceed of WinMut is shown in Algo-

rithm 2. First, the execution engine performs interpret
against the active mutants based on the current state (Line 1).

The interpret primitive evaluates each active mutant

and maintains them as multi-value variables in the program

state. If the current location is a point to perform split (Line

2), the execution engine filters the variables which may affect

the test result by the global control-flow graph CFG (Line

3). Note that these variables can be selected by compile-time

analysis, which is a sound analysis by picking out all variables

that may affect the result. Based on the live variable set O,

it performs the primitive partition on the partial state

σ|O which only contains the mappings of the variables in O
(Line 4). Then the execution engine groups the mutants into

equivalent classes by comparing their partial states. At last,

it performs the primitive split, for each equivalent class it

forks a new child process to carry the mutants of the class and

finish the remainder executions.

The scope of continuously interpreting is controlled by the

procedure need_split(). In general, more mutants could

be merged into the same equivalent class when the execu-

tion engine postpones performing partition and split.

However, we can not neglect the overhead introduced by

evaluating and maintaining the multi-value variables, because

the primitives interpret, partition, and split are

operated on complex data structures. This requires us to find

a reasonable timing to perform partition and split. For

example, if we maintain the multi-value variables in different

execution paths, the multi-value should be further mapped by

path conditions, which leads to unaffordable overhead. Thus

we decide to partition and split when the location is a control-
flow statement, such as branch statements and function calls.

The results of need_split(l) can be statically decided during

compile time.

D. Faster processes

The second improvement intends to speed up per-process

execution by removing redundant interpretations. The follow-

ing facts inspire us (1) a massive number of child processes

are forked, (2) once a child process is split, the mutants

carried by it only affect a limited range of locations that

have to be interpreted, and (3) execution is much faster than

interpretation.

Our basic idea is to interpret the locations that must be

interpreted and execute other locations in child processes.

Refer to the previous section, each new child process is split

based on a partial state, i.e. a smaller mapping from variables

to values, and we only need to interpret the locations which

have active mutants and a slice of these locations.

Shown as Algorithm 1, the entrance of the interpreter

is controlled by the global set G, which is initialized by

the procedure initialize(P). In split-stream execution and

386

AccMut, G contains all the mutated locations of P in all

processes. To selectively interpret, in WinMut, initialize(P)
adds the forward slice locations of all mutants of P , which

can be decided during compile time. The forward slice is the

set of locations that depend on multi-value variables. Note that

the primitive split converts multi-value variables to single-

value ones, so the slice will not cross a split point.

Furthermore, split-stream execution and AccMut do not

update G during execution. In contrast, once the primitive

split is invoked, WinMut filters G in child processes,

leaving only the locations (1) which have the active mutants

of the current child process, and (2) the dynamic forward

slice of these locations, shown in Line 7-9 of Algorithm 2.

Because WinMut performs split splits at every control-

flow or pointer access statement, which occurs frequently,

the dynamic slice of the locations will not be so large.

Consequently, G is sharply reduced to a few locations in a

child process.

E. Basic Primitives

We abstract 4 necessary primitives from the operations

required by fork-based mutation analysis approaches. These

primitives, including execute, interpret, partition
and split, are atomic operations. The execute primitive

directly delegates a code block to the physical machine and

updates the program state in place, which does not need more

explanation.

Input: l: the current location
Data: I: a set of mutants IDs of the current process
Data: σ: the global program state

1 σp ← an empty partial program state
2 foreach i ∈ I do
3 ρ← evaluate(μ(l, i).code, σ@i)
4 foreach o ∈ outvar(μ(l, i)) do
5 if o ∈ σp.variables then
6 σp[o]← σp[o] ∪ {i �→ ρ[o]}
7 else
8 σp[o]← {i �→ ρ[o]}
9 end

10 end
11 end
12 foreach o ∈ σp.variables do
13 σ[o]← σp[o]
14 end

Algorithm 3: The implementation of interpret.

The interpret primitive evaluates a set of mutants and

updates the program state with multi-value variables, shown

as Algorithm 3. For each active mutant, it first executes the

variant at the current location l with mutant ID i on the

projected program state σ@i to get the result state ρ (Line

3). Then it updates the empty partial program state to ensure

that σp@i|outvar(μ(l,i)) = ρ|outvar(μ(l,i)) (Line 4-10), where

outvar means the output variables of a variant. At last, it

writes the variables in the partial program state back to the

global program state (Line 12-14).

Algorithm 4 shows the partition primitive, which clus-

ters the active mutants into equivalent classes based on the

Input: σp: the input partial program state
Data: I: a set of mutants IDs of the current process

1 X ← empty map from projected partial program states to
mutant sets

2 foreach i ∈ I do
3 ρ← σp@i
4 if ρ ∈ X.keyset then
5 X[ρ]← X[ρ] ∪ {i}
6 else
7 X[ρ]← {i}
8 end
9 end

10 return X
Algorithm 4: The implementation of partition.

projection of the input partial state. For each mutant i, it first

get the projection of the input partial state (Line 3). Then the

primitive tries to find the equivalent class that i belongs to, and

adds it to that class (Line 4-8). Then it returns the partition

result X (Line 10).

Input: X: a map from projected partial program states to
mutant sets

Data: I: the set of active mutation IDs of the current process
Data: σ: the global program state

1 foreach ρ ∈ X.keyset do
2 M ← X[ρ]
3 pid← fork()
4 if is_child_process(pid) then
5 foreach o ∈ ρ.variables do
6 σ[o]← ρ[o]
7 end
8 I ←M
9 return

10 end
11 I ← (I −M)
12 end

Algorithm 5: The implementation of split.

Algorithm 5 shows the primitive split, which splits

executions into child process(es) for each equivalent class. For

each key (i.e. a projected partial program state) in X , it gets

the corresponding set of mutants M (Line 2) and forks a new

process (Line 3). For the child processes, the primitive updates

the variables (Line 5-7), then sets the mutants represented by

the child process to M (Line 8), and returns (Line 9). For the

parent process, it just removes M from the active mutants of

the current process (Line 11).

Note that although the algorithms conceptually iterate

through a huge set I , we can do some optimizations on this

to iterate only through a subset of it and get the same result.

We will elaborate on this later.

IV. IMPLEMENTATION

In this section we present WinMut implementation details.

Same as AccMut, WinMut is a first-order mutation execution

engine on LLVM-IR [26], that is each location contains an IR

instruction. LLVM-IR is a high-level intermediate representa-

tion (IR), which is the core concept of the LLVM compiler

infrastructure. IR-based mutation analysis approaches support

387

Table I: Mutation operators in WinMut

Name Description Example
AOR Replace arithmetic operator a + b → a − b
LOR Replace logic operator a & b → a | b
ROR Replace relational operator a == b → a >= b
LVR Replace literal value T → T + 1
COR Replace logical connector a && b → a || b
SOR Replace shift operator a >> b → a << b

STDC Delete a call f() → nop
STDS Delete a store a = 5 → nop
UOI Insert a unary operation b = a → a++; b = a
ROV Replace the operation value f(a, b) → f(b, a)
ABV Take absolute value f(a, b) → f(abs(a), b)

multiple front-end source languages without losing expres-

siveness. Particularly, LLVM-IR supports several mainstream

languages, such as C/C++, Python, Objective-C, and CUDA.

Recently researchers have proposed several IR-based mutation

approaches, including LLVM-IR based [25], [27], [28], [29],

[30], [31] and Java bytecode based [32], [15]. Note that

our algorithm is general which can be applied on different

code granularity, e.g., on instruction level, expression level, or

statement level.

A. Mutation Operators

As each location holds an IR instruction in WinMut, we

should employ IR-based mutation operators. We adopt the

same set of mutation operators as AccMut, shown in Table I.

These 11 mutation operators cover the mutation operators used

by the state-of-the-art mutation analysis tools, such as Ma-

jor [16], [33], Javalanche [32], and SRCIROR [28]. Major is a

Java source code level mutation analysis tool, while Javalanche

is a Java bytecode level one. All their mutation operators are

employed except the Java language specified ones. SRCIROR

is the state-of-art LLVM-IR based tool employing a set of

4 mutation operators, which is a subset of ours. In addition,

these mutation operators are considered to be effective and are

widely used in existing approaches [34], [35], [36].

B. Data Structures and Instrumentation

Although we have ensured that execute will not be used

for an IR instruction affected by any mutation (either is

mutated itself or depends on any multi-value variables), we

need to ensure that (1) if an IR instruction is executed by the

primitive execute, the delegated physical instruction could

manage the multi-value variable data structure correctly, and

(2) the interpretation effort should be as little as possible,

which can be realized by reducing the set of mutants to be

interpreted (i.e. I in Algorithm 3).

For a mutated location, we instrument the code as the

following pseudo-C code:

if (l in G) {
{output vars of all mutants} =
proceed(l, {input vars of all mutants})

} else {
{output vars} = execute(l, {input vars})

}

To make sure that execute works, we cannot change the

type declarations for the variables in the original code from

primitive types to mappings to support multi-value variables.

Instead, we maintain the multi-value variables as two parts:

original program variable and additional mapping. In the

instrumented code, all of the variables are declared as the

original program and always hold a single value, we call this

variable the original program variable. We maintain the values

in the original program variable as if they are computed with

a set of execute calls after the last split primitive call.

We associate each variable with an additional mapping
inside of the execution engine. We store those mutant/value

pairs in it for those mutants with different values from the

original program variable. A good property of this two-part

multi-value variable data structure is that we can treat single-

value variables and multi-value variables in a unified way. A

single-value variable would have an empty mapping, while

multi-value variables would have non-empty ones.

If the location l holds no mutants and the input variables are

all single-value, the output variables of proceed procedure

will all be single-value. The proceed procedure does nothing

but maintaining the original program variables. So we can

safely replace that proceed to execute and still keeps the

multi-value data structures valid.

This can also reduce the redundant interpretation in Algo-

rithm 3 as what interpret does now is just computing

the additional mappings for the output variables. We do not

need to compute all the values for the mutants in the set I .

Those mutants that neither mutate the current location nor are

presented in any additional mapping for the input variables

can be skipped.

C. Transparent I/O System for Fork-based Mutation Analysis

Another contribution of WinMut is that we implemented a

new I/O system that is transparent to users. Some fork-based

mutation analysis tools [23], [25] rely on the POSIX system

call fork to perform split executions. Although the copy-on-
write mechanism of fork safely separates the virtual memory

spaces between the parent process and the child process which

avoids copying the physical memory whose pages are not

written, it is unable to separate the I/O handlers between the

processes. For example, if the child process writes a file that

is inherited from the parent process, not only the file content

is changed, but also the file pointer of the parent process

is moved. To solve this problem, AccMut builds a memory

mirror of all opened files, that is, it loads the whole file to

memory once it opens a file. However, AccMut requires users

to manually modify source code to replace all I/O operations

with theirs, which needs considerable efforts. It also restricted

the available APIs mostly to C standard I/Os. To deal with the

restrictions, we implemented a memory-based I/O library that

can be linked transparently to replace the I/O system.

Our library supports not only C standard I/Os to read

or write a file, but also many file system operations like

removing/creating the files. However, it would be infeasible for

us to make the user-space library conform to POSIX standard

and work all the same as the OS kernel. There are also features

impossible for us to implement, e.g. we cannot support a

388

program invoking execve or fork system calls. We tried

our best to make the memory-based I/O system robust enough

to make sure it will not crash too many tests and affect our

main result.

We have a lot of assertions in our library code trying

to detect inconsistency and unsupported features. When our

tool executes a program, it would first execute the whole

program under the memory-based I/O library to detect if there

are any unsupported features. If any unsupported feature is

detected or any assertion is violated, the tool would skip the

mutation analysis on that program. This makes sure that we

can successfully execute a test script if only a small portion

of the programs would crash under our I/O system.

In the future, we may provide kernel support for the I/O

operations to make them identical to the existing APIs, but

this is beyond the scope of this paper.

V. EVALUATION

We have evaluated WinMut on a set of real-world subjects,

many of which are large-scale projects. We aim to empirically

answer the following research questions:

RQ1 How does WinMut perform compared to the state-of-the-

art approach AccMut?

RQ2 How is the contribution of each optimization in WinMut?

A. Experimental Setup

We implemented WinMut as a fork of AccMut, which is

based on LLVM [26]. It is hard for us to manually modify the

real-world projects to replace the I/O operations, and there

are many I/O operations unhandled by AccMut in the real-

world projects, so we modified AccMut and replaced the I/O

handling module with our memory-based I/O library. This

also makes sure that the two tools share the same setting,

so we can compare the performance of the main algorithms.

Just as AccMut, we have not implemented the support for

some instructions required by C++ yet, so we only consider

C subjects to answer the research questions.

We select the subjects by the following criteria:

(1) we only consider real-world, open-source subjects that

have developer-written test suites;

(2) the target subjects can be compiled by LLVM;

(3) the application of the subjects should be diverse.

We selected 10 projects and their properties are shown

in Table II. The column Loc shows the lines of code without

comments and empty-lines, collected by the tool cloc. The col-

umn # Mut/# BB/# Split shows the number of mutants/basic-

blocks/split point of the subject. A split point is a location to

perform the primitive split. The column # Mut per Inst/Split

is the average number of mutants for each instruction/scope

of the locations corresponding to a split point.

These subjects contain in total more than 1.5 million lines of

code, 20,203,516 mutants, 435,949 basic blocks, and 964,967

split points. On average, each instruction holds 16.3 mutants,

and each split point handles 20.9 mutants.

Moreover, the subjects are from different fields. Binutils-

gas is a portable assembler supplied by GNU. Coreutils is the

GNU core utilities for manipulating files, shell and text. Gmp

is an arithmetic library supplied by GNU. Libsodium is an

encryption library. Lz4 is a lossless file compression program.

Pcre2 is a regular expression parser that is compatible with

Perl. Libpng is the official PNG library. Lua is an interpreter

for the Lua language. Grep is a utility for searching plain-text

data. Ffmpeg is a tool for video and audio.

As some of the subjects are very large, to complete the

evaluation in a practical time budget, we do not evaluate the

tools on the whole test suite. For each subject, we execute

the original test suite for 2 seconds and record the covered

ones as our activated tests. We also skipped the tests requiring

unhandled operations by our transparent I/O systems. The

column # Exec Tests of Table II shows the number of executed

tests. Note that due to the diversity of the projects, they

have very different organizations of test suites, one test case

reported by the build system may correspond to many smaller

test cases written in the test framework. We choose not to use

the test case number reported by the building system but count

the invoked program number for mutation analysis.

In total, we collect 1,149 tests in our evaluation. Note that

although we only choose a subset of the tests, they can be

still extremely time-consuming due to the intrinsic high cost

of mutation analysis. In our experiment, the tests for libpng

covered within the execution of 2 seconds would cost more

than 4 days by AccMut. Moreover, in total, a 14-days run of

AccMut is large enough for evaluation.

Following AccMut, to avoid the execution time influenced

by process scheduling across multi-core, we serially executed

tests without parallelization. In addition, we also limited the

number of parallel processes to one for child processes. That

is, each mutant in our experiment was executed serially. We

ran WinMut 3 times on each subject, and record the average

time. All experiments were evaluated on an Intel Core i7-

7700K CPU and 64GB memory with Ubuntu 18.04 LTS.

B. Results and Discussion

1) RQ1: Comparison with the State-of-the-art: To answer

the RQ1, we compared WinMut with the state-of-the-art fork-

based approach AccMut in the following two aspects: (1)

the overall execution time and (2) the number of invoked

processes.

The results are shown in Table III. The columns Tw and

Ta respectively show the overall execution time of WinMut

and AccMut. The column Ta/Tw shows the speedup of Win-

Mut over AccMut. While the columns Pw and Pa show the

invoked process number of WinMut and AccMut. The column

(Pw/Pa)% shows the percentage of process number of WinMut

over AccMut. The averages are computed as geometric mean.

First, we analyze the results of execution time and we have

the following findings:

(1) WinMut is faster than AccMut on all the subjects with

an average speedup of 5.57x;

(2) WinMut achieves a speedup higher than 10x on 3 sub-

jects, namely Gmp, Libsodium and Lz4. Especially, it has

the maximum speedup of 28.88x on Gmp;

389

Table II: Subject programs

Name Loc # Exec Tests # Mut # BB # Split # Mut per Inst # Mut per Split
Binutils-gas 299K 290 166,488 6,477 11,261 13.5 14.8
Coreutils 144K 287 400,150 11,532 19,628 20.4 7.2
Gmp 115K 30 613,595 10,774 23,225 22.3 26.4
Libsodium 45K 43 426,025 5,657 13,813 18.4 30.8
Lz4 13K 185 472,591 11,286 22,656 16.9 22.7
Pcre2 80K 33 266,399 6,900 11,722 16.7 22.7
Libpng 56K 9 282,831 8,527 15,394 15.0 18.4
Lua 16K 19 172,493 6,981 11,840 13.6 14.6
Grep 83K 207 217,399 8,406 16,144 12.9 13.5
Ffmpeg 1,032K 46 17,185,545 359,409 819,284 16.2 21.0
Total 1,584K 1,149 20,203,516 435,949 964,967 16.3 20.9

Table III: The total run time and the number of invoked processes of WinMut and AccMut

Subject Tw To1 To2 Ta Ta/To1 Ta/To2 Ta/Tw Pw Pa (Pw/Pa)%
Binutils-gas 1.62h 2.74h 1.75h 2.80h 1.02 1.60 1.72 1,580,925 1,695,842 93.2%
Coreutils 2.92m 2.96m 2.94m 2.97m 1.01 1.01 1.02 68,137 71,022 95.9%
Gmp 1.19h 37.10h 1.30h 34.26h 0.92 26.34 28.88 148,461 158,069 93.9%
Libsodium 3.94h 90.28h 4.54h 86.17h 0.95 18.98 21.86 313,007 336,904 92.9%
Lz4 1.94h 25.15h 2.16h 25.94h 1.03 12.01 13.40 118,287 130,351 90.7%
Pcre2 0.62h 4.91h 0.64h 4.99h 1.02 7.75 8.08 208,107 221,859 93.8%
Libpng 15.14h 108.71h 16.61h 111.60h 1.03 6.72 7.37 71,187 78,919 90.2%
Lua 10.08h 84.38h 10.28h 84.57h 1.00 8.22 8.39 358,892 377,177 95.2%
Grep 0.39h 1.19h 0.41h 1.28h 1.08 3.13 3.30 888,151 957,265 92.8%
Ffmpeg 2.25h 2.34h 2.54h 2.64h 1.13 1.04 1.17 390,729 441,240 88.6%
Total 37.21h 356.85h 40.29h 354.29h 1.02 5.17 5.57 4,145,883 4,468,648 92.7%

In the timing representation, h/m means hour/minute.

(3) WinMut has a more significant speedup on compute-

intensive programs, such as arithmetic and encryption

libraries.

Second, we evaluate the ability of WinMut to cluster more

mutants. We can observe that:

(1) WinMut consistently employs fewer processes than Acc-

Mut on all the subjects;

(2) WinMut further reduces the number of invoked processes

by 7.3% on average compared with AccMut.

2) RQ2: Contribution of Each Optimization: WinMut con-

sists of 2 individual optimizations, i.e., the one for merging

more mutants and the one for operating more efficiently.

These optimizations may have different effects on the overall

speedup, and this question intends to detailed evaluate their

contribution. To answer this question, we conducted a con-

trolled trial. That is, we only activate one optimization and

compare the overall execution time.

Table III shows the results. The columns Tw, To1, To2 and

Ta show the execution time of WinMut, WinMut with the

first optimization (for merging more mutants), WinMut with

the second optimization (for more efficient execution), and

AccMut, respectively. The column Tx/Ty means the speedup

of the technique y over x.

We can make the following findings:

(1) the second optimization boosts the execution;

(2) the first optimization introduces speed reduction on the

subjects Gmp and Libsodum and improve the perfor-

mance slightly on the remaining subjects;

(3) except on the subject Ffmpeg, the second optimization

contributes a higher speedup than the first one on all

subjects;

(4) the speedup of the second optimization is closer to the

final speedup of WinMut;

(5) the combination of the 2 optimizations results in a better

speedup than employing just one of them.

As discussed in the previous section, merging more mutants

involves heavier costs that would cover the benefits. So it

is reasonable that the first optimization slightly slows down

the execution on Gmp and Libsodium. Moreover, the first

optimization boosts more than the second optimization on

the subject Ffmpeg for it merges more mutants according

to Table III. Finally, the final speedup can not be predicted

by simply multiply the speedup results of the optimizations,

which implies the combination of the two techniques has

complex mutual influence. However, the time required by

WinMut is only 92% of the time required by AccMut +

second optimization, which is very close to the process number

ratio. This indicates that the second optimization minimizes the

impact of mutant merging algorithms and makes it possible to

use a more powerful algorithm in the future research to merge

more mutants without introducing too much overhead.

C. The robustness and impact of the memory-based I/O system

To verify that our memory-based I/O system will not affect

the main results, we executed all test cases from the subjects

and recorded how many test cases it passes.

In our experiment, we are not counting the test case number

reported by the script, because each reported test case could

correspond to many smaller test cases. We count how many

test programs are executed with our I/O system. For the time,

we only count the time for executing the subject program. We

do not count the time for executing the external test framework

(e.g. DejaGnu or manually written test script).

390

First, we execute the whole test suite without our I/O

system, record the total test cases number. Then we execute

the whole test suite with our I/O system. If the test script

does not finish normally, we remove the failing test cases and

those test cases depending on them and restart until the tests

remaining in the test script all pass. Then we record the process
number. We subtract this process number with the number of

processes with detected unsupported features, and we get the

total passing test cases.

Then we rerun the current test script with and without our

I/O system and record the time. The results are shown in

Table IV. The running time is comparable, indicating that our

I/O library does not introduce too much overhead.

Table IV: Passed cases and running time with/without our I/O lib

Without I/O lib With I/O lib
Subject #Cases Time/s #Cases Time/s

Binutils-gas 2368 16.09 2368 20.91
Coreutils 31698 8.23 16597 29.67

Gmp 170 23.00 170 22.62
Libsodium 77 4.26 77 4.04

Lz4 185 8.52 185 5.79
Pcre2 33 0.17 33 0.19

Libpng 38 65.13 38 64.86
Lua 28 3.74 21 3.83
Grep 3604 0.92 2743 3.70

Ffmpeg 4398 146.31 4388 163.37

We noticed that the library breaks some test cases in

Coreutils, Lua, Grep and Ffmpeg. Coreutils is a library whose

test cases are testing all kinds of edge cases and we expect

that it would crash our library the most, and we found that

our unlink implementation fails to handle some cases. Lua

failed to execute some of the tests because they used fork.

Grep and Ffmpeg are querying unsupported files. e.g., Ffmpeg

is trying to read /dev/urandom, which is not supported.

VI. RELATED WORK

In this section, we first present related work on accelerating

mutation analysis, then we introduce related fields. Based on

the survey papers [34], [35], [36], we can roughly divide exist-

ing approaches into static approaches and dynamic approaches.

Statically Accelerating Mutation Analysis. Static approaches

intend to reduce the cost of mutation analysis without execut-

ing mutants against test suites. Basically, static approaches aim

to reduce cost during mutation generation and compile time.

Several approaches use static analysis of compilers to

remove the useless equivalent mutants [37], [21], [38] or

improve the effectiveness [27]. As the costs of mutation

analysis are positively associated with the number of mutants

and the size of test suites, existing approaches mainly focus

on reducing them.

A popular class of methods is to select a subset of the

mutants, such as mutation sampling [39], mutation cluster-

ing [40], and mutation operator selection [41], [42]. Some

comprehensive approaches combining several techniques [43],

[44], [45], [46]. Some approaches utilize machine learning

models trained by real-world bugs to prioritize the high-

quality mutants [29], [47], or focus on the newly committed

code [48]. Some other methods analyze test suites, such as

test selection [49] and figure out the reusable test results in

regression testing [50]. Some ML-based methods try to predict

the results of mutants and avoid execution [51], [52]. These

approaches can be pre-process filters and combined with ours.

Dynamically Accelerating Mutation Analysis. As mutation

analysis is a kind of dynamic approach essentially, some

existing studies aim to reduce runtime costs of mutation

analysis. Besides mutant reduction techniques [53], [54], the

majority of dynamic approaches focus on reducing redundant

certain parts of mutation analysis.

Some approaches intend to reduce compile time redundan-

cies. Mutant schemata [55] compiles all mutants once into

a single executable file. Some incipient approaches avoid

compile-time costs in an interpreting fashion [56], but they

are usually lumbered by the low-efficiency of interpreters.

The prevalent dynamic method is to reduce redundancies

during executing mutants. Split-stream execution [23], [22]

reduces the redundant executions before the first mutated

statement. Just et al. cluster mutants are test equivalent [57].

AccMut [25] as mentioned before, tries to further merge mu-

tants of the same states. As discussed before, our approaches

could outperform these approaches.

Higher-order mutation analysis [58], [59] replaces more

than one statement once in a program, which is very different

from standard mutation analysis, and some approaches aim

to share executions in higher-order mutation analysis [24],

[60]. Finally, some works resort the test cases to kill mutants

faster [61], [49]. These approaches are orthogonal to ours.

Sharing Executions in Software Product-line Testing,
Model Checking and Symbolic Execution. Similar ideas

of sharing executions also exist in the fields of software

product-line testing, model checking and symbolic execution

approaches, which face the same challenge of redundancy.

A product in software product-line can be treated as a

higher-order mutant [60]. Variational execution maintains a

set of multi-value variable across the entire test execution to

share common executions [62], [63], [64]. These approaches

aim to merge products (i.e. higher-order mutants) via purely

interpreting, which leads to significant overhead.

Multi-valued model checking supports variables in the fi-

nite state machine to be multi-valued [65]. Delta symbolic

execution [66], shadow symbolic execution [67], and multi-

path symbolic execution [68] try to share common parts of

multiple paths.

VII. CONCLUSION

In this paper, we propose a novel approach to accelerate

mutation analysis. We take the existing fork-based mutation

analysis approaches a step further by (1) reducing the number

of invoked processes, and (2) removing redundancies inside

the execution engine. We implemented our approach into the

tool WinMut. The evaluation results show that our approach

achieves an average speedup of 5.57x on top of the state-of-

the-art approach, AccMut.

391

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[2] R. G. Hamlet, “Testing programs with the aid of a compiler,” Software
Engineering, IEEE Transactions on, vol. SE-3, no. 4, pp. 279–290, 1977.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
2006.

[4] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 435–445.

[5] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An
empirical study on mutation, statement and branch coverage fault
revelation that avoids the unreliable clean program assumption,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 2017, pp. 597–608.

[6] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, N. Malevris, and
Y. Le Traon, “How effective are mutation testing tools? an empirical
analysis of java mutation testing tools with manual analysis and real
faults,” Empirical Software Engineering, vol. 23, no. 4, pp. 2426–2463,
2018.

[7] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores
correlated with real fault detection? a large scale empirical study on
the relationship between mutants and real faults,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 537–548.

[8] M. Papadakis and Y. Le Traon, “Using mutants to locate" unknown"
faults,” in ICST, 2012, pp. 691–700.

[9] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in ICST, 2014, pp. 153–162.

[10] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, 2015.

[11] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 2017, pp. 609–620.

[12] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[13] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in ICSE, 2012, pp. 3–13.

[14] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in ASE, 2013, pp.
356–366.

[15] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[16] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
FSE, 2014, pp. 654–665.

[17] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, “Musc: A tool for
mutation testing of ethereum smart contract,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1198–1201.

[18] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
A mutation testing framework for deep learning systems,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1158–1161.

[19] G. Petrović and M. Ivanković, “State of mutation testing at google,” in
Proceedings of the 40th international conference on software engineer-
ing: Software engineering in practice, 2018, pp. 163–171.

[20] G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, and R. Just, “An
industrial application of mutation testing: Lessons, challenges, and
research directions,” in 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 2018,
pp. 47–53.

[21] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in ICSE, 2015, pp. 936–946.

[22] K. N. King and A. J. Offutt, “A fortran language system for mutation-
based software testing,” Software: Practice and Experience, vol. 21,
no. 7, pp. 685–718, 1991.

[23] R. Gopinath, C. Jensen, and A. Groce, “Topsy-Turvy: a smarter and
faster parallelization of mutation analysis,” in ICSE, 2016, pp. 740–743.

[24] S. Tokumoto, H. Yoshida, K. Sakamoto, and S. Honiden, “Muvm:
Higher order mutation analysis virtual machine for c,” in ICST, 2016,
pp. 320–329.

[25] B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation
analysis via equivalence modulo states,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2017, pp. 295–306.

[26] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[27] F. Hariri, A. Shi, H. Converse, S. Khurshid, and D. Marinov, “Evaluating
the effects of compiler optimizations on mutation testing at the compiler
ir level,” in 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2016, pp. 105–115.

[28] F. Hariri and A. Shi, “Srciror: A toolset for mutation testing of c
source code and llvm intermediate representation,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 860–863.

[29] M. Papadakis, T. T. Chekam, and Y. Le Traon, “Mutant quality indi-
cators,” in 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2018, pp. 32–39.

[30] F. Hariri, A. Shi, V. Fernando, S. Mahmood, and D. Marinov, “Com-
paring mutation testing at the levels of source code and compiler
intermediate representation,” in 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), 2019, pp. 114–124.

[31] T. T. Chekam, M. Papadakis, and Y. Le Traon, “Mart: a mutant
generation tool for llvm,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 1080–1084.

[32] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for
Java,” in ESEC/FSE, 2009, pp. 297–298.

[33] R. Just, F. Schweiggert, and G. M. Kapfhammer, “Major: An efficient
and extensible tool for mutation analysis in a Java compiler,” in ASE,
2011, pp. 612–615.

[34] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649–678, 2011.

[35] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in
Computers. Elsevier, 2019, vol. 112, pp. 275–378.

[36] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro,
“A systematic literature review of techniques and metrics to reduce the
cost of mutation testing,” Journal of Systems and Software, vol. 157, p.
110388, 2019.

[37] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques to
detect equivalent mutants,” Software Testing, Verification and Reliability,
vol. 4, no. 3, pp. 131–154, 1994.

[38] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and M. Har-
man, “Detecting trivial mutant equivalences via compiler optimisations,”
IEEE Transactions on Software Engineering, vol. 44, no. 4, pp. 308–333,
2017.

[39] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:
An empirical study,” Journal of Systems and Software, vol. 31, no. 3,
pp. 185–196, 1995.

[40] C. Ji, Z. Chen, B. Xu, and Z. Zhao, “A novel method of mutation
clustering based on domain analysis.” in SEKE, 2009, pp. 422–425.

[41] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation
of selective mutation,” in Proc. ICSE, 1993, pp. 100–107.

[42] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based
mutant selection superior to random mutant selection?” in Proc. ICSE,
2010, pp. 435–444.

[43] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective mutation
testing for concurrent code,” in Proc. ISSTA, 2013, pp. 224–234.

[44] M. Jimenez, T. T. Checkam, M. Cordy, M. Papadakis, M. Kintis,
Y. L. Traon, and M. Harman, “Are mutants really natural? a study on
how" naturalness" helps mutant selection,” in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2018, pp. 1–10.

392

[45] J. M. Zhang, L. Zhang, D. Hao, L. Zhang, and M. Harman, “An
empirical comparison of mutant selection assessment metrics,” in 2019
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2019, pp. 90–101.

[46] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based
and random mutant selection: Better together,” in Proc. ASE, 2013, pp.
92–102.

[47] T. T. Chekam, M. Papadakis, T. F. Bissyandé, Y. Le Traon, and K. Sen,
“Selecting fault revealing mutants,” Empirical Software Engineering,
vol. 25, no. 1, pp. 434–487, 2020.

[48] W. Ma, T. Laurent, M. Ojdanić, T. T. Chekam, A. Ventresque, and M. Pa-
padakis, “Commit-aware mutation testing,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 394–405.

[49] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired
by test prioritization and reduction,” in Proc. ISSTA, 2013, pp. 235–245.

[50] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression mutation
testing,” in Proc. ISSTA, 2012, pp. 331–341.

[51] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Pre-
dictive mutation testing,” IEEE Transactions on Software Engineering,
vol. 45, no. 9, pp. 898–918, 2018.

[52] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang,
“Predictive mutation testing,” in ISSTA, 2016, pp. 342–353.

[53] C.-a. Sun, F. Xue, H. Liu, and X. Zhang, “A path-aware approach
to mutant reduction in mutation testing,” Information and Software
Technology, vol. 81, pp. 65–81, 2017.

[54] C.-a. Sun, A. Fu, X. Guo, and T. Y. Chen, “Remusse: A redundant
mutant identification technique based on selective symbolic execution,”
IEEE Transactions on Reliability, 2020.

[55] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” in Proc. ISSTA, 1993, pp. 139–148.

[56] A. Offutt VI and K. N. King, “A fortran 77 interpreter for mutation
analysis,” in ACM SIGPLAN Notices, vol. 22, no. 7. ACM, 1987, pp.
177–188.

[57] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in ISSTA, 2014,
pp. 315–326.

[58] Y. Jia and M. Harman, “Higher order mutation testing,” Information and
Software Technology, vol. 51, no. 10, pp. 1379–1393, 2009.

[59] M. Harman, Y. Jia, P. Reales Mateo, and M. Polo, “Angels and monsters:
An empirical investigation of potential test effectiveness and efficiency
improvement from strongly subsuming higher order mutation,” in ASE,
2014, pp. 397–408.

[60] C.-P. Wong, J. Meinicke, and C. Kästner, “Beyond testing configurable
systems: applying variational execution to automatic program repair
and higher order mutation testing,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2018,
pp. 749–753.

[61] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-redundant
mutation operators and test suite prioritization to achieve efficient and
scalable mutation analysis,” in ISSRE, 2012, pp. 11–20.

[62] C.-P. Wong, J. Meinicke, L. Lazarek, and C. Kästner, “Faster variational
execution with transparent bytecode transformation,” Proceedings of the
ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1–30, 2018.

[63] C. H. P. Kim, S. Khurshid, and D. Batory, “Shared execution for
efficiently testing product lines,” in 2012 IEEE 23rd International
Symposium on Software Reliability Engineering. IEEE, 2012, pp. 221–
230.

[64] J. Meinicke, C.-P. Wong, C. Kästner, T. Thüm, and G. Saake, “On
essential configuration complexity: Measuring interactions in highly-
configurable systems,” in Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2016, pp. 483–
494.

[65] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel, “Multi-
valued symbolic model-checking,” ACM Transactions on Software En-
gineering and Methodology (TOSEM), vol. 12, no. 4, pp. 371–408, 2003.

[66] M. d’Amorim, S. Lauterburg, and D. Marinov, “Delta execution for
efficient state-space exploration of object-oriented programs,” IEEE
Transactions on Software Engineering, vol. 34, no. 5, pp. 597–613, 2008.

[67] T. Kuchta, H. Palikareva, and C. Cadar, “Shadow symbolic execution for
testing software patches,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 27, no. 3, pp. 1–32, 2018.

[68] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise: Multi-path symbolic
execution using value summaries,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 842–853.

393

